WELCOME TO

The Center for Systems Science and Engineering (CSSE) at JHU

who we are

The Center for Systems Science and Engineering (CSSE) is a research collective housed within the Department of Civil and Systems Engineering (CaSE) at Johns Hopkins University (JHU).  Our faculty, researchers, and students work on a range of complex and interdisciplinary problems, united by the goal to better understand and improve societal, health, and technological systems for everyone.

Areas of focus

Explore Our Research

Tracking COVID-19

We are tracking the COVID-19 spread in real-time on our interactive dashboard with data available for download. We are also modeling the spread of the virus. Preliminary study results are discussed on our blog.

Tracking Measles Cases in the U.S.

The project is a collaborative, interdisciplinary effort conducted by a group of researchers at Johns Hopkins University who are tracking and modeling the risk of measles in the U.S. It reflects contributions from the Center for Systems Science and Engineering (CSSE) at the Whiting School of Engineering, the International Vaccine Access Center (IVAC) at the Bloomberg School of Public Health, and the Bloomberg Center for Government Excellence. The team is led by Lauren GardnerShaun Truelove, and William Moss.

Assume that a decision-maker’s uncertain behavior is observed. We develop a an inverse optimization framework to impute an objective function that is robust against misspecifications of the behavior. In our model, instead of considering multiple data points, we consider an uncertainty set that encapsulates all possible realizations of the input data. We adopt this idea from robust optimization, which has been widely used for solving optimization problems with uncertain parameters. By bringing robust and inverse optimization together, we propose a robust inverse linear optimization model for uncertain input observations. We aim to find a cost vector for the underlying forward problem such that the associated error is minimized for the worst-case realization of the uncertainty in the observed solutions. That is, such a cost vector is robust in the sense that it protects against the worst misspecification of a decision-maker’s behavior. 

As an example, we consider a diet recommendation problem. Suppose we want to learn the diet patterns and preferences of a specific person and make personalized recommendations in the future. The person’s choice, even if restricted by nutritional and budgetary constraints, may be inconsistent and vary over time. Assuming the person’s behavior can be represented by an uncertainty set, it is important to find a cost vector that renders the worst-case behavior within the uncertainty set as close to optimal as possible. Note that the cost vector can have a general meaning and may be interpreted differently depending on the application (e.g., monetary cost, utility function, or preferences). Under such a cost vector, any non-worst-case diet will thus have a smaller deviation from optimality.  

We introduce a new approach that combines inverse optimization with conventional data analytics to recover the utility function of a human operator. In this approach, a set of final decisions of the operator is observed. For instance, the final treatment plans that a clinician chose for a patient or the dietary choices that a patient made to control their disease while also considering her own personal preferences. Based on these observations, we develop a new framework that uses inverse optimization to infer how the operator prioritized different trade-offs to arrive at her decision. 

We develop a new inverse optimization framework to infer the constraint parameters of a linear (forward) optimization based on multiple observations of the system. The goal is to find a feasible region for the forward problem such that all given observations become feasible and the preferred observations become optimal. We explore the theoretical properties of the model and develop computationally efficient equivalent models. We consider an array of functions to capture various desirable properties of the inferred feasible region. We apply our method to radiation therapy treatment planning—a complex optimization problem in itself—to understand the clinical guidelines that in practice are used by oncologists. These guidelines (constraints) will standardize the practice, increase planning efficiency and automation, and make high-quality personalized treatment plans for cancer patients possible.