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Modeling We implemented a previously published model that integrates both outbreak dynamics 

and outbreak control into a decision-support tool for mitigating infectious disease pandemics at 

the onset of an outbreak through border control. A stochastic metapopulation epidemic 

simulation tool is used to simulate global outbreak dynamics, and the border control mechanism 

considered is passenger screening upon arrival at airports (entry screening), which is used to 

identify infected or at-risk individuals. A detailed description of the model is provided at the end 

of this section. 

Our metapopulation model is based on a global network of local, city-level, populations 

connected by edges representing passenger air travel between cities. At each node of the 

network, we locally model outbreak dynamics using a discrete-time Susceptible-Exposed-

Infected-Recovered (SEIR) compartmental model. IATA monthly passenger travel volumes for 

all travel routes connecting airport pairs (including stopovers) is used to construct the weighted 

edges. The SEIR parameters are defined based on a 10 day period from exposure to recovery, 

aligning with a previously published report, divided into a 5 day incubation and 5 day recovery 

period for the purposes of this analysis. The effective contact rate corresponds to a reproductive 

number of 2, which aligns with an estimate from Imperial College London, reporting a  range 

between 1.5 and 3.5. We assume initial cases of 2019-nCoV are only present in Wuhan, and no 

border control is accounted for. The model results presented are based on an average of 250 runs.  

Results The simulation model is run for a time period between the start of the outbreak, up until 

January 25. The simulation results align with the number of air travel reported cases outside of 

mainland China early in the outbreak; specifically, we estimate 40 cases of 2019-nCoV to have 

been exported outside of mainland China by January 25, as was reported. For 40 cases to have 

been exported out of the country, we believe the number of 2019-nCoV cases in mainland China 

are likely much higher than that reported throughout January. Specifically, we estimate there to 

be around 20,000 cases of 2019-nCoV in mainland China on January 25 (at which time closer to 

2000 were reported). We also estimate there were already hundreds of human cases of 2019-

nCoV in Wuhan in early December. The estimated verses confirmed cases during January are 

presented in Figure 1. Our estimates are slightly higher than those from two other modeling 

exercises, namely, a report out of Imperial College estimated 4000 cases in mainland China on 

January 18, and a report out of Northeastern University estimated 12,700 on January 24. 

https://systems.jhu.edu/
http://www.rciti.unsw.edu.au/
https://systems.jhu.edu/
mailto:l.gardner@jhu.edu
https://www.nature.com/articles/s41598-019-38665-w
https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/2019-nCoV-outbreak-report-17-01-2020.pdf
https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-2019-nCoV-transmissibility.pdf
https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-2019-nCoV-transmissibility.pdf
https://www.mobs-lab.org/2019ncov.html


 
 

 
 

However, there was a substantial and rapid increase in reported cases outside of China during 

these dates, which is still occurring, and likely to lead to higher estimates than those in this study. 

 

 

Figure 1 Estimated vs. Reported Cases of 2019 n-CoV cases globally 

 

The simulation provides the expected number of imported cases arriving at each airport globally 

(based on final travel destinations of travelers) as of Jan 25. By aggregating this over all airports 

in a country we can estimate the total number of imported cases in each country. Figure 2 below 

illustrates our estimated number of imported cases arriving in each country compared with the 

number of 2019-nCoV reported cases as of January 26, at which time the 13 countries/regions 

we identify at highest risk have all reported at least one case. 
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Figure 2. List of Countries/Regions with highest risk of imported 2019-nCoV cases 

We further present the results at the airport level (based on their final travel destination), to 

identify the set of cities inside and outside mainland China at highest risk of case importation. 

The top 50 airports outside mainland China and within mainland China are illustrated in Figures 

3 and 4, and listed in Table 1 and 2 below, respectively. The cities at highest risk are generally 

those in mainland China that receive high direct or indirect travel from WUH. While many of the 

cities outside mainland China that we identify at high risk have already reported cases, these 

cities should be prepared for additional cases to be reported over the coming days, likely in 

travelers whom departed Wuhan before the travel ban was implemented on January 23. In the 

U.S., our high risk airports have already been designated for screening by the CDC, namely 

LAX, JFK, SFO, ATL and ORD. By considering complete travel paths (with stopover airports), 

we identify additional airports that are at risk of exposure to infected travelers, and suggest the 

international airports in Seattle, Washington-Dulles, Newark, Detroit, Boston, Houston, Las 

Vegas, Dallas Fort Worth and Honolulu in the U.S., should also be considered for enhanced 

screening and security.  



 
 

 
 

 

Figure 3. 50 Highest risk airports for 2019-nCoV arriving travelers outside mainland China.  

  
Figure 4. 50 Highest risk airports for 2019-nCoV arriving travelers in mainland China 

 



 
 

 
 

Table 1. 50 Highest risk airports for 2019-nCoV arriving travelers outside mainland China.  

 

Rank Airport Code Airport Name City Country/Region Global Region

1 HKG Hong Kong Intl Hong Kong Hong Kong Asia

2 DMK Don Muang International Airport Bangkok Thailand Asia

3 BKK Suvarnabhumi Bangkok Thailand Asia

4 SIN Changi Singapore Singapore Asia

5 TPE Taiwan Taoyuan International Airport Taipei Taiwan Asia

6 ICN Incheon International Airport Seoul South Korea Asia

7 MFM Macau International Macau Macau Asia

8 KHH Kaohsiung Intl Kaohsiung Taiwan Asia

9 KIX Kansai International Osaka-Kansai Japan Asia

10 HKT Phuket Intl Phuket Thailand Asia

11 CJU Jeju International Jeju South Korea Asia

12 CDG Charles De Gaulle Paris-De Gaulle France Europe

13 KUL Kuala Lumpur International Airport Kuala Lumpur Malaysia Asia

14 TSA Songshan Taipei-Songshan Taiwan Asia

15 CNX Chiang Mai Intl Chiang Mai Thailand Asia

16 SFO San Francisco Intl San Francisco United States North America

17 TNN Tainan Tainan Taiwan Asia

18 LAX Los Angeles Intl Los Angeles United States North America

19 MEL Melbourne Airport Melbourne Australia Australasia

20 SYD Kingsford Smith Sydney Australia Australasia

21 SGN Tan Son Nhat International Airport Ho Chi Minh City Vietnam Asia

22 NRT Narita Tokyo-Narita Japan Asia

23 NGO Chubu Centrair Intl Nagoya Japan Asia

24 LHR Heathrow London-Heathrow United Kingdom Europe

25 FUK Fukuoka Fukuoka Japan Asia

26 KBV Krabi Airport Krabi Thailand Asia

27 CGK Soekarno-Hatta Intl Jakarta Indonesia Asia

28 IST Ataturk Istanbul Turkey Europe

29 JFK John F Kennedy Intl New York-JFK United States North America

30 YVR Vancouver Intl Vancouver Canada North America

31 AKL Auckland Intl Auckland New Zealand Australasia

32 DXB Dubai International Dubai United Arab Emirates Middle East

33 SVO Sheremetyevo Moscow-Sheremetyevo Russian Federation Europe

34 YYZ Toronto Lester B. Pearson Intl Toronto Canada North America

35 PNH International Phnom Penh Cambodia Asia

36 MNL Ninoy Aquino Intl Manila Philippines Asia

37 HND Tokyo Intl (Haneda) Tokyo-Haneda Japan Asia

38 RGN Yangon International Yangon Myanmar Asia

39 FSZ Mount Fuji Shizuoka Japan Asia

40 REP Angkor International Siem Reap Cambodia Asia

41 HDY Hat Yai International Hat Yai Thailand Asia

42 BNE Brisbane Intl Brisbane Australia Australasia

43 DPS Ngurah Rai Denpasar-Bali Indonesia Asia

44 KKC Khon Kaen Khon Kaen Thailand Asia

45 DEL Indira Gandhi Intl Delhi India Asia

46 FCO Fiumicino Rome-Da Vinci Italy Europe

47 FRA Frankfurt International Airport Frankfurt Germany Europe

48 NST Nakhon Si Thammarat Nakhon Si Thammarat Thailand Asia

49 URT Surat Thani Surat Thani Thailand Asia

50 MAD Adolfo Suarez-Barajas Madrid Spain Europe



 
 

 
 

Table 2. 50 Highest risk airports for 2019-nCoV arriving travelers in mainland China

 

Rank Airport Code Airport Name City Country/Region Global Region

1 PEK Capital International Beijing China Asia

2 CAN Baiyun International Guangzhou China Asia

3 PVG Pudong International Shanghai China Asia

4 SHA Hongqiao International Shanghai-Metro China Asia

5 SZX Bao'an International Shenzhen China Asia

6 HAK Meilan International Haikou China Asia

7 SYX Phoenix International Sanya China Asia

8 KMG Changshui International Kunming China Asia

9 CTU Shuangliu International Chengdu China Asia

10 XMN Gaoqi International Xiamen China Asia

11 HGH Xiaoshan International Hangzhou China Asia

12 WNZ Yongqiang International Wenzhou China Asia

13 CKG Jiangbei International Chongqing China Asia

14 KWE Longdongbao International Guiyang China Asia

15 NNG Wuxu International Nanning China Asia

16 TSN Binhai International Tianjin China Asia

17 TAO Liuting International Qingdao China Asia

18 XIY Xianyang International Xi'an China Asia

19 SHE Taoxian International Shenyang China Asia

20 URC Diwopu International Urumqi China Asia

21 FOC Changle International Fuzhou China Asia

22 HRB Taiping International Harbin, P. R. China China Asia

23 ZUH Sanzao International Zhuhai China Asia

24 ENH Xujiaping Enshi China Asia

25 DLC Zhoushuizi International Dalian China Asia

26 NGB Lishe International Ningbo China Asia

27 INC Hedong Yinchuan China Asia

28 TYN Wusu International Taiyuan China Asia

29 SWA Jieyang Chaoshan Shantou China Asia

30 CGQ Longjia International Changchun China Asia

31 LHW Zhongchuan Lanzhou China Asia

32 YNT Penglai International Yantai China Asia

33 TNA Yaoqiang International Jinan China Asia

34 HET Baita International Hohhot China Asia

35 JJN Jinjiang Quanzhou China Asia

36 BAV Erliban Baotou China Asia

37 NTG Xingdong Nantong China Asia

38 LJG Sanyi Airport Lijiang China Asia

39 WUX Sunan Shuofang Wuxi China Asia

40 LZH Bailian Liuzhou China Asia

41 KWL Liangjiang International Guilin China Asia

42 HYN Luqiao Taizhou China Asia

43 XNN Caojiabao Xining China Asia

44 YNZ Nanyang Airport Yancheng China Asia

45 JHG Xishuangbanna Gasa International Jinghong China Asia

46 XFN Liuji Airport Xiangyang China Asia

47 NBS Changbaishan Baishan China Asia

48 LYI Shubuling Airport Linyi China Asia

49 KRL Korla Korla China Asia

50 ZHA Zhanjiang Zhanjiang China Asia



 
 

 
 

Limitations There are multiple modeling assumptions and limitations that should be noted 

regarding these estimates.  

• In the day after this analysis was completed, travel reported cases increased by 40%, from 

40 to 56. Therefore, it is likely the estimated number of cases reported in this study are a 

lower bound. 

• There is still uncertainty about the transmission of 2019-nCoV, specifically surrounding 

the reproductive number and incubation period. The parameters chosen in this analysis 

fall in the uncertainty intervals provided to date. However, the substantial increase in 

cases being reported in late January indicate the parameters we used are too conservative, 

and the incubation period may be longer than we specified here, thus we are 

underestimating risk. More data will help us finer tune our estimates. 

• Asymptomatic infections are not considered. If asymptomatic infections prove capable of 

spreading the virus, then these results would be further underestimating risk. 

• The model only accounts for passenger air travel, and excludes mobility within and 

between cities via other modes of transport. Therefore, the spreading risk between 

regions connected via alternatives modes of travel is underestimated. This is most 

applicable to spread within China, which we are underestimating. 

• The SEIR parameters used to model the outbreak within each city are deterministic. 

However, the spread of infected travelers moving between cities is modeled 

stochastically.   

• Arrival passenger screening at airports and the complete air travel ban implemented in 

Wuhan on January 23 are not accounted for in this analysis. However, it is unlikely these 

policies impact the results presented, which are based on the start of the outbreak until 

January 26.  

• No local control mechanisms (prophylaxtics, vaccines, school closures, quarantine 

efforts) within cities are accounted for. Thus, the R0 is assumed to be constant over time, 

and across all locations. 

• We are using 2015 Travel data, because that is the most recent complete (airport-to-

airport) data we had available in the lab. 

 

Next Stages The next stage of our modeling exercise will be forward looking, with two main 

points of focus. First, will be the identification of those travel routes likely to continue spreading 

2019-nCoV cases around the world, assuming travelers are no longer departing Wuhan directly. 

Second, we will identify the set of airports globally that should be prioritized for passenger 

screening.  

 

  



 
 

 
 

Supplemental Model Description 

Epidemic Simulation Model Our metapopulation model is based on a global air travel network 

which connects local, city-level, populations. Formally, the proposed metapopulation network can 

be represented by a graph 𝐺 =  (𝑉, 𝐸) where 𝑉 is the set of nodes and 𝐸 is the set of directed 

edges in the network. Nodes represent cities and edges represent passenger travel routes, possibly 

including stopovers, among cities. At each node of the network, we locally model outbreak 

dynamics using a discrete-time Susceptible-Exposed-Infected-Recovered (SEIR) compartmental 

model. The time steps are set to be 𝑡 ∈  𝑇 = {1, 2, … , 𝑡𝑜𝑏𝑠} where 𝑡𝑜𝑏𝑠 is the time step where the 

state of the outbreak is being evaluated. Local and global outbreak dynamics models are coupled 

by indexing compartmental states by network nodes 𝑖 ∈  𝑉 and time steps 𝑡. Specifically, we 

denote 𝑆𝑖,𝑡, 𝐸𝑖,𝑡, 𝐼𝑖,𝑡 and 𝑅𝑖,𝑡 the susceptible, exposed, infectious and recovered compartments at 

node 𝑖 at time 𝑡. Because our focus is on the early stages of an outbreak (e.g., weeks or months), 

we assume that nodes have time-independent populations and we denote 𝑁𝑖 the population at node 

𝑖 ∈ 𝑉. We use this metapopulation model to capture day-to-day global travel dynamics, wherein 

the time steps are assumed to be of the order of magnitude of a day in length, which consistent 

with other studies that simulate infectious diseases dynamics at a global scale. Critically, the model 

incorporates a multi-commodity network flow model with time-dependent edge flows to model 

passenger movements from their origin node to their destination node. The path-based formulation, 

while more complex, enables more effective control decisions to be identified by the model. 

Specifically, the model is able to accurately capture the effect of controlling at stopover airports 

along a route, as well as identify the most cost-effective control decisions which utilize information 

about the entire path. 

The governing infection dynamics of the SEIR model are used to model local outbreak dynamics 

in each city. For the purposes of this work the contact rate is assumed to be constant across 

populations. We denote 𝛽𝑖 the (local) contact rate at node 𝑖, 𝛾 the transition or recovery rate and 𝛼 

the exposed parameter. In addition, we define 𝜆 ∈ [0,1] the likelihood to travel when infectious, 

with 𝜆 = 1 representing the case where infected and healthy individuals are equally likely to travel. 

This parameter aims to represent the impact of reduced travel demand when infectious individuals 

are unable to travel due to severe symptoms. Unless otherwise noted, 𝜆 = 1. To model intercity 

flow, we assume that compartmental edge flows are proportional to tail node states, i.e. the number 

of travelers in a state is proportional to the number of individuals in this state at the origin node. 

For compartments 𝑆 and 𝑅, compartmental edge flows are assumed deterministic and equal to their 

expected values. However, since the compartmental edge flows of exposed and infectious 

passengers may be considerably smaller than that of other compartments, we model 𝐸𝑖𝑗,𝑡
𝑘  and 𝐼𝑖𝑗,𝑡

𝑘  

as discrete random variables. This stochastic allocation of infected individuals to destinations is 

critical when modeling the early stages of an outbreak, thus enforcing integer, compartmental edge 

flows and preventing the movement of fractional exposed or infectious individuals. This approach 

captures the critical and inherent uncertainty of the destination of the first infected travelers. For 

full details on the model see (1) 

https://www.nature.com/articles/s41598-019-38665-w


 
 

 
 

Travel Data The metapopulation network is constructed using global passenger air travel data 

from 2015 provided by the International Air Transport Association (IATA). The data provided 

from IATA includes monthly passenger travel volumes for all travel routes connecting airport pairs 

(including stopovers), representing nearly 83% of global traffic volumes. The final network used 

in this study contains the top 99% of the travelled routes provided, resulting in a network with 

approximately 500,000 routes, 2,908 cities, and 3,267 airports. The city populations served by 

each airport are based on the population densities provided by Oak Ridge National Laboratory’s 

LandScan. The population size for each city was based on a 50km radius centered on each airport 

as was done previously, and computed using open source Geographic Information Systems 

software QGIS (https://qgis.org/). In some cases, multiple cities are serviced by more than one 

airport, for which the all assigned airport flows are mapped to the same population.  

Border Control Decisions To integrate control decisions within the above stochastic 

metapopulation network we model passenger screening upon arrival at airports as a control 

variable, representative of the proportion of arriving passengers successfully screened at a given 

airport. We denote 𝑥𝑖,𝑡 ∈ [0,1] the control rate at node 𝑖 at time step 𝑡. Control decisions can then 

be incorporated in the proposed metapopulation epidemic model, thus capturing the combined 

effects of screening passengers at multiple nodes along their travel route. The complete model can 

be viewed as a control-driven stochastic metapopulation epidemic model wherein variables 𝑥𝑖,𝑡 

represent the level of control over time space in the network 

 

1. Zlojutro, A, Rey, D and L Gardner*. (2019) “Optimizing border control policies for global 

outbreak mitigation”. Scientific Reports 9:2216. DOI https://doi.org/10.1038/s41598-019-

38665-w (Open Source link) https://rdcu.be/bniOs 
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