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Abstract The spread of infectious disease is an inherently stochastic process. As
such, real time control and prediction methods present a significant challenge. For
diseases which spread through direct human interaction, (e.g., transferred from
infected to susceptible individuals) the contagion process can be modeled on a
social-contact network where individuals are represented as nodes, and contacts
between individuals are represented as links. The model presented in this paper seeks
to identify the infection pattern which depicts the current state of an ongoing
outbreak. This is accomplished by inferring the most likely paths of infection through
a contact network under the assumption of partially available infection data. The
problem is formulated as a bi-linear integer program, and heuristic solution methods
are developed based on sub-problems which can be solved much more efficiently.
The heuristic performance is presented for a range of randomly generated networks
and different levels of information. The model results, which include the most likely
set of infection spreading contacts, can be used to provide insight into future epidemic
outbreak patterns, and aid in the development of intervention strategies.

Keywords Contagion . Social-contact networks . Optimization

1 Introduction

Many factors contribute to the contagion process of infectious disease, such as
demographic characteristics, population density, infection prevention practices (e.g.,
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vaccination), local programs (e.g., health, emergency response), and also critically
significant, the interaction patterns among individuals. Today, a large proportion of
the population lives in increasingly dense conditions, an ideal environment for rapid
disease transmission.

The stochastic nature of the contagion process (i.e., contact between an infectious
and susceptible person may or may not result in a new infection) makes it difficult to
identify the path of infection or predict the impact that a new disease might have on a
region. Over the last 100 years, significant research efforts have focused on predicting
the expected spreading behavior of contact-based infectious diseases, exploiting
characteristics of the population and the disease itself. However, there have been
limited research efforts focusing on the use of future social network data: while
current social network models are abstract constructs where people are anonymously
represented as nodes, it is not unreasonable to expect developments in data collection
(through Facebook, Twitter, Foursquare, etc.) which will allow accurate mappings
between known individuals.

Spatial analysis of networks, such as transport and communication networks, is a
growing area of research (Gastner and Newman 2006; Schintler et al. 2007; Erath et
al. 2009), and has recently been expanded to include social network modeling,
specifically the ability to reproduce spatial structure and interaction between individ-
uals for large-scale social networks (Illenberger et al. 2012). Furthermore, the ongo-
ing development of activity-based travel models, which examine why, where and
when various activities are engaged in by individuals (Lam and Huang 2003; Roorda
et al. 2009; Ramadurai and Ukkusuri 2010), as well as innovations in pedestrian
modeling (Hoogendoorn and Bovy 2005) present additional promising alternatives to
generate social contact networks in the future. As such, it is critical to develop
methods which can exploit this data in aiding the prevention and mitigation of
contagion episodes.

The objective of the model proposed in this paper is to infer the spatiotemporal
path of infection through a social-contact network for an ongoing outbreak scenario
under the assumption that limited infection information is available. This work
specifically considers contact-based diseases, which refer to the family of infectious
diseases that are transmitted from an infected to susceptible individual via direct
contact. This category includes sexually transmitted diseases, various strands of the
flu, SARS and the common cold, among others. In turn the social contact network is
representative of the social interactions (e.g. through school, work or home) which
occur among a group of individuals in a given time period (e.g. a day).

The problem approached in this paper considers the case in which the structure of the
network is deterministically known (set of nodes and links), but time-of-infection data is
available only for a fraction of the population. We further assume that no information is
known about the infection tree (i.e., the set of social contacts through which the disease
spread). We refer to this set of assumptions as the partial information version of the
problem, in contrast to the full information case in which time-of-infection information
is available for all infected nodes. In previous work by Gardner et al. (2012), an
application of the full information problem was addressed, where the objective was to
infer the most likely air travel routes responsible for spreading the Swine Flu to
unexposed geographic regions. In Gardner’s paper social contact networks were not
considered, and the network structure was defined by the air traffic system.
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Generalization of the full information case to the partial information case intro-
duces a significant increase in computational complexity. The partial information
problem can be modeled as an integer program, and represents a considerably more
difficult problem to solve than the full information case. Heuristic solution methods
are therefore developed based on sub-problems which can be solved much more
efficiently. The model performance is based on how accurately it predicts the paths of
infection for a given contagion episode (which are extracted from simulation out-
puts). The outcome of the model can provide insight into future epidemic outbreak
behavior and aid in the evaluation and recommendation of intervention strategies. In
addition, the proposed solution methodology can be extended to alternative contagion
processes which occur atop known network structures (e.g. tracking food borne
outbreaks which propagate though a distribution network).

In the following section a literature review of relevant network models is provided.
Section 3 defines the problem and section 4 presents the mathematical problem
formulation and solution methodology. Section 5 describes the evaluation procedure
and numerical results. Section 6 concludes the paper with discussion of the results
and future research directions.

2 Background

Dynamic contagion processes impact copious network systems, and are therefore the
focus of various studies within the emerging field of network science. In addition to
the transmission of infectious disease through communities and biological systems
(Murray 2002; Anderson and May 1991), the spread of information, ideas and
opinions via social networks can also be modeled as a contagion process (Coleman
et al. 1966; Hasan and Ukkusuri 2011); as well as the global spread of computer
viruses on the Internet network (Newman et al. 2002; Balthrop et al. 2004); power
grid failures in electricity markets (Kinney et al. 2005; Sachtjen et al. 2000); and the
collapse of financial systems (Sornette 2003). Of interest to this study is the propa-
gation of disease through a social contact network, and therefore will be focus of the
remainder of the section 2.

The infection rate and pattern of the disease spreading process through a network
is dependent on both the parameters of the disease (infectious period, level of
contagiousness, etc.) and the fundamental structure of the network. In efforts to
predict expected disease spreading behavior and characteristics, epidemiological
models span from extremely generalized and simplified analytical models to increas-
ingly in-depth stochastic agent based simulation tools. Analytical models are used to
quantify the statistical properties of epidemic patterns (Colizza et al. 2006; Balcan et
al. 2009); however, they are unable to capture certain behavioral aspects of the
dynamics of disease spreading, and often lack detailed information about the network
structure. In contrast, agent based simulation models can be used to replicate possible
spreading scenarios, predict average spreading behavior, and analyze various inter-
vention strategies for a given network and disease while capturing a greater degree of
detail, but in turn require a highly detailed set of input data (see Rvachev and Longini
(1985), Epstein and Cummings (2002), Eubank et al. (2004), Hufnagel et al. (2004),
Dibble and Feldman (2004), Cahill et al. (2005), Dunham (2005), Meyers et al.
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(2005), Small and Tse (2005), Carley et al. (2006), Ferguson et al. (2006), Germann
et al. (2006), Ekici et al. (2008), Roche et al. (2011), and Haydon et al. (2003)). The
most recent and comprehensive models provide a greater degree of realism, but are
difficult to implement within the short time frames in which real time control de-
cisions must be made. Large scale simulation models can also be computationally
taxing because multiple runs are required to accurately predict expected outcomes.

There currently exists a gap in the literature which calls for scenario specific
disease prediction models. Most contagion models predict future potential out-
break scenarios based on system-wide information; however, they are not able to
reconstruct the contagion process of an ongoing outbreak to reveal information
about the current state of the network. Recent advances in disease modeling have
begun addressing this issue. For example, there are models which use genetic
sequencing data to analytically infer the geographic history of a given virus’s
migration (Drummond and Rambaut 2007; Lemey et al. 2009; Wallace et al.
2007; Cottam et al. 2008; Haydon et al.; 2003). Often this approach involves
first enumerating all possible evolutionary trees, then assigning posterior proba-
bilities based on specifics of the respective virus’ mutation rates. Additionally
the infection trees only include locations where samples were available. Jombart
et al. (2009) proposed a novel approach to reconstruct the spatiotemporal dy-
namics of outbreaks from sequence data by inferring ancestries directly between
strains of an outbreak using their genotype and collection date. The “infectious”
links were selected such that the number of mutations between nodes is mini-
mized. The idea of using infection data to construct the most likely path of
transmission is the highlighted goal of this paper.

This study is motivated by the need to track viruses through space and time in
order to aid in the implementation of real-time containment strategies. Often the
required genetic data and mutation based statistical properties are unavailable, or
impossible to gather within the required time-frame. The proposed approach relies
instead on available infection reports, contact network structure and disease proper-
ties to infer the spatiotemporal path of infection through a contact network, data
which can be more realistically gathered during an epidemic. The proposed method-
ology accounts for missing infection information, enabling previously over-looked
infection sources to be included.

3 Problem Definition

Using infection reports, contact network structure and disease properties, the meth-
odology described in this section makes inferences about infection spreading patterns
in a population. The problem assumes an underlying contagion process which can be
represented on a network by a discrete-time, stochastic process. The following
terminology is used for the remainder of this paper:

i. ti, time stamps: the time period at which a node was reportedly infected, or
predicted to be infected

ii. pij, link transmission probability: the probability that an infected node i will infect
a susceptible (and adjacent) node j in a single time step.
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iii. 1 infectious period: the number of time steps an infected node remains infectious
(i.e., is able to infect others) following its own infection. 1 can also represent the
amount of time before recovery, hospitalization or some other type of removal
from the network.

The problem objective is defined as follow: assume we are given a social contact
network which has been exposed to infection, such as that shown in Fig. 1(a), in
which a contagion process occurs resulting in a set of infected nodes (and corre-
sponding time stamps for each) such as shown in Fig. 1(b). Assuming we are only
given information on a subset of the infected nodes, such as the scenario shown in
Fig. 1(c), we seek an infection tree such as that shown in Fig. 1(d) that branches to all
known infected nodes, which maximizes the likelihood of the infection event.

The social contact network G ∈ (V, A) is formally defined by a set of nodes, V,
which represent a population of individuals, and links, A, which represent physical
daily contacts between individuals. The set N represents the set of individuals that
became infected during the time period when population V was exposed to infection.
The set I represents the set of information nodes: a subset of the infected individuals
N, which were identified as infected (i.e., they visited a doctor, hospital, pharmacy,
etc.). The problem can be further broken down into two information-based cases:

I. Full information: The complete set of infected nodes and the time stamp, ti, for
each infected node is available, i.e., I=N.

II. Partial information: Information on a subset of the infected node set, I⊆N, is
available. This problem serves as the more general version of the problem and is
the focus of this paper.

Relaxing the full information assumption results in a more realistic setting
where only a fraction of infected individuals consult a physician, visit a
hospital, etc., resulting in partial information. The objective of the partial
information case is again to determine the most likely set of infection spreading
contacts when only a subset of the infected nodes are identified. One highlight
of this study explores the performance of the proposed model under different
levels of available information.

3.1 Link-Based Infection Process

The relationship between the underlying contagion process and the mathemat-
ical programming formulation (presented in section 4) are of specific interest in
regards to the problem definition. This section introduces the link-based infec-
tion process. The network-based contagion process is introduced in section 3.2.
The link-based infection process consists of a set of link trials which are the
basic building blocks of the network level contagion process. In other words, a
given infection scenario at the network level is the result of many individual
link-based trials.

Each link trial consists of the following evaluation: At a discrete time step t, assume
node i is in an infectious state, node j is in a susceptible state, and the two nodes are
connected by link (i,j) with a link transmission probability pij. A successful link trial is
defined as when node i infects node j in time step t, and occurs with probability pij. The
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probability a link trial is unsuccessful is therefore (1−pij). A simulation time step t is
representative of the latent period, or the amount of time between when an individual
contracts the disease and becomes infectious. The timestamp of node i, denoted by ti,
represents the time (e.g., day) at which individual i was infected.

We now consider two connected nodes, i and j. In calculating the probability
associated with the inclusion or exclusion of link (i,j) in the infection tree, we must
account for two events: either no infection trials are successful, or exactly one
infection trial is successful.

We denote the probability of no successful trials on (i,j) by γij. More explicitly, γij
represents the probability that the correct number of trials were unsuccessful so as to
ensure that node i did not infect node j. The number of necessary unsuccessful trials is
represented by:

Δtij ¼ min max t j−ti; 0
� �

; T−ti; l
� � ð1Þ

Fig. 1 Illustration of the problem definition (a) Sample contact network structure G ∈ (V, A), and
link transmission probabilities, pij (b) Example of outbreak scenario, (c) Example of the node level
information provided (after an outbreak); set of information nodes, I are highlighted with “x” (d)
Example of model output (arrows) predicting the infection pattern. The upper left hand corner node
is the source
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This expression accounts for situations where node j was infected after i (corre-
sponding to tj− ti), infected before i (corresponding to 0), or not infected (correspond-
ing to T− ti) and 1. The value of γij is given by expression (1):

γij ¼ 1−pij
� �Δtij 1−xijð ÞX k;ið Þ∈A xki½ �

ð2Þ

The decision variable xij is included so as to account for this term only if the link is
excluded from the network (i.e., xij=0) and node i has been infected (i.e.,
∑

k;ið Þ∈A
xki½ � ¼ 1). If either condition is not satisfied, the term will evaluate to 1.

Similarly, the probability of exactly one successful trial on link (i,j), which we
denote by αij, can be calculated for nodes i and j such that tj>ti as the probability of
Δtij−1 unsuccessful trials, and a single successful trial:

αij ¼ 1−pij
� �xij Δtij−1ð Þ

p
xij
ij ð3Þ

The decision variable xij allows the expression to take on the correct probability
expression if the link is included in the tree (i.e., xij=1), and 1 otherwise. Combining
expressions (2) and (3), we can develop an expression which represents the proba-
bility associated with both the inclusion and exclusion of a link:

1−pij
� �xij Δtij−1ð Þ

pxij
ij

1−pij
� �Δtij 1−xijð ÞX k;ið Þ∈A xki½ �

∀ ijð Þ∈A ð4Þ

When xij=0 and ∃ k:xki=1, the link is not included in the infection tree and the

probability is equal to ð1� pi jÞΔti j . Then the term evaluates to 1. If xij=1 the link is
included in the infection tree and the associated probability is equal to

1−pij
� �Δtij−1

pij. In the next section we extend this result to the network level.

3.2 Network-Based Infection Process

This work treats the network-based infection process as an iterative aggregation
of individual link trials. We begin the simulation model by initializing all nodes
to a susceptible state, and randomly choose a set of nodes to be infected (0 ∈ V).
Then we simulate transmission of the disease over multiple time steps, t, for a
predetermined simulation period, T. During each time step, we identify all links
that connect infectious nodes and susceptible nodes, and perform an infection
trial for each such link. If the link infection is successful, then we change the
newly infected node status to “infected” in the following time step. The node
remains infected for 1 time steps. After a node is infected for 1 time steps, its
status is changed to “recovered”. Once a node is recovered it can no long
transmit the disease or become infected again (the equivalent of gaining immu-
nity or being removed from the network).

This process is representative of a discrete-time network Susceptible-
Infectious-Removed (SIR) contagion process. The simulation model described
in words above forms the basis for the mathematical formulation and evaluation
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presented in the remainder of this paper. It follows that the aim of this solution
methodology is to replicate the actual infection tree for a specific outbreak
scenario by exploiting node level infection information and the network
structure.

3.3 Assumptions

Multiple simplifying assumptions are necessary to solve the proposed problem. This
work assumes:

i. a priori knowledge of the underlying social contact network, G ∈ (V, A)
ii. The contagion process can be approximated as discrete-time network SIR

contagion process with known transmission probabilities, pij
iii. An individual can be infected at most once, and thus only those diseases for

which immunity is acquired after recovery are considered.
iv. Known timestamps ti for the set of information nodes, I

The first assumption is the most debatable of the four. Social networks are
difficult to characterize, as they are not directly observable, and also highly
unstable. However, the increase of social networking information available
online, and improvements in activity-based travel modeling both contribute
towards the possibility of access to more detailed social contact information
in the future. The second assumption is also present in many previous epide-
miological models and ongoing research is focused on accurately quantifying
these parameters. The third assumption restricts the set of applications to those
diseases for which acquiring immunity restricts an individual from
being infected more than once over the entire course of an outbreak.
Assumption 4 is based on the premise that some infected individuals report
to a medical authority (i.e., hospital, private clinic, pharmacy), and that infor-
mation is made available.

4 Method

In this section the mathematical formulation and proposed solution methodology
for the partial information case (as defined in section 3) are presented. A non-
linear integer program formulation for the partial information case is given in
section 4.1and the solution method for the partial information case is described
in section 4.2.

4.1 Mathematical Formulation

The partial information case represents the case where not all infections are
reported. In this scenario, the fraction of missing information is unknown, i.e.,
the nodes that are unreported may or may not have been infected. These nodes
are referred to as zero-information nodes, i ∈ N\I. The nodes with known
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timestamps are referred to as information nodes, i ∈ I. In the case of partial
information, the objective is to determine the set of links which spread the
infection, while simultaneously determining the time at which zero-information
nodes were infected, if at all. What follows is a non-linear integer programming
formulation:

∏
∀ i; jð Þ∈A

1−pij
� �xij Δtij−1ð Þ

pxij
ij

1−pij
� �Δtij 1−xijð ÞX k;ið Þ∈A xki½ �

ð5Þ

s.t.

Δtij ¼ min

max t j−ti; 0
� �

;

T−ti;
o
∀ i; jð Þ∈A

l

8><
>:

ð6� 8Þ

tmax xij−1
� �

< t j−ti∀ i; jð Þ∈A ð9Þ

tmax 1−xij
� �þ l≥ t j−ti∀ i; jð Þ∈A ð10Þ

ti ¼ t fi ∀i∈I ð11Þ

X
j∈N

xji ¼ 1∀i∈InO ð12Þ

X
j∈N

xji≤1∀i∈NnI ð13Þ

xij≤
X
j∈N

xji∀i∈NnI ð14Þ

xij ¼ 0; 1f g∀ ijð Þ∈A ð15Þ

ti∈Z∀i∈NnI ð16Þ
The two decision variables are i) xij, which is set to 1 if link (i,j) is included

in the infection tree and 0 otherwise, and ii) ti which is the timestamp assigned
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to node i. The objective (5) enforces that the set of links included in the final
spanning tree maximizes the likelihood of the tree. The first constraint (6-8)
provides the definition of Δt. The next two constraints enforce consistency
between the x and t variables: If xij=1, meaning i is the predecessor of j in the
infection tree, then (9) guarantees that the infection time of j will be later than
that of i. Constraint (10) ensures that that the infection time of j will be within
the time period when i is infectious, i.e., within 1 time units of the infection
time of i. Constraint (11) fixes the timestamp variable ti for all information-
nodes. Constraints (12)-(14) enforce the spanning tree structure of the solution.
Constraint (12) ensures that every known infected node, except the source node,
is infected exactly once, i.e., has exactly one incoming link. Constraint (13)
allows zero-information nodes to be part of the infection tree, but restricts them
to have at most one predecessor. Constraint (14) ensures that only zero infor-
mation nodes that have been previously infected will be able to in turn infect
other nodes. Constraints (15) and (16) force the decision variables xij to be
binary and ti to be integer.

The objective function (5) can be transformed from a product of terms to an
equivalent summation of terms by maximizing the natural logarithm of the objective
function.

X
∀ i; jð Þ∈A

xij Δtij−1
� �

lnqij þ xijlnpij−xijΔtijlnqij
X
k;ið Þ∈A

xki þΔtijlnqij
X
k;ið Þ∈A

xki

The last term of this expression represents the penalty associated with link (i,j)
resulting in no infections based on the infection of node i. The individual terms of this
summation can be redistributed among the expressions corresponding to each incom-
ing link to i. Redistributing the terms, and expanding the first term, we obtain the
following expression:

X
∀ i; jð Þ∈A

xijΔtijlnqij−xijlnqij þ xijlnpij−xijΔtijlnqij
X
k;ið Þ∈A

xki þ xij
X
j;lð Þ∈A

Δtjllnqjl

We can further simplify the above expression by examining the behavior of the
term xijΔtijlnqij ∑

k;ið Þ∈A
xki.

Lemma 1 If the x variables are integer, the behavior of the expression xij ∑
k;ið Þ∈A

xki is

equivalent to the behavior of xij.
Proof. If xij=1, because of constraints (13) and (14), 1 ¼ xij≤ ∑

k;ið Þ∈A
xki ¼ 1. If xij=

0, then xij ∑
k;ið Þ∈A

xki ¼ 0:

Using Lemma 1, we can simplify the formulation, cancel similar terms, arriving at
the objective function shown in Eq. 17. The new formulation features additive terms
rather than multiplicative terms, although it remains nonlinear due to interaction
terms between the x and t variables. The set of constraints remains the same, resulting
in the formulation below:
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max
X

∀ i; jð Þ∈A
xij lnpij−lnqij þ

X
j;lð Þ∈A

Δtjllnqjl

2
4

3
5 ð17Þ

s.t.

Δtij ¼ min

max t j−ti; 0
� �

;

T−ti;
o
∀ i; jð Þ∈A

l

8><
>:

ð18Þ

tmax xij−1
� �

< t j−ti∀ i; jð Þ∈A ð19Þ

tmax 1−xij
� �þ l≥ t j−ti∀ i; jð Þ∈A ð20Þ

ti ¼ t fi ∀i∈I ð21Þ

X
j∈N

xji ¼ 1∀i∈InO ð22Þ

X
j∈N

xji≤1∀i∈NnI ð23Þ

xij≤
X
j∈N

xji∀i∈NnI ð24Þ

xij ¼ 0; 1f g∀ ijð Þ∈A ð25Þ

ti∈Z∀i∈NnI ð26Þ

We will refer to constraints (18) - (26) as the IP constraints.

4.2 Solution Method Under Full Information

The full information case is a special, more tractable version of the partial information
case presented above. Under the assumption that I=N, i.e., we know the full set of
infected nodes, we need not optimize over the variables t, since they are all fixed,
which allows us to make the problem linear. The simplified formulation allows us to
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exploit specific properties to develop a much more efficient solution method than
solving this linear program directly.

The properties of the full information case result in a spanning tree that branches to
every node i ∈ I. The general problem of finding a directed maximum branching tree
can be solved using a simplified version of the algorithm developed by Edmonds
(1967). Edmonds’ algorithm consists of maintaining an optimal sub-network that
reaches every node, and works towards feasibility by replacing links that form a cycle
in that sub-network. As such, the cycle finding subroutine of the algorithm is the most
computationally taxing part of the algorithm. A significantly more efficient algorithm
can be developed for the full information version of the problem by pruning the set of
links to be considered based on constraints (19) and (20). The resulting network is
acyclic, which greatly simplifies the maximum branching procedure.

Let the set of feasible links (i,j) ∈ L be such that ti<tj<(ti+1). It is trivial to show
that in all feasible solutions, xkl=0 for all links (k,l) in A\L. Therefore, we can limit
our focus to the link set L. Because of constraint (19), which requires feasible links in
L to connect nodes with increasing timestamps, the resulting sub-network has a
topological ordering, and as such, cannot contain any directed cycles. We further
note that constraints (23) and (25) represent the requirement that exactly one incom-
ing link is chosen for every infected node. As such, any solution that only chooses
links in L so that every node has exactly one incoming link will be feasible. The
following algorithm can be implemented to solve the full information case, and the
resulting set of selected links S forms the maximum likelihood tree.

i. Define the set of feasible links, L={(i,j): ti<tj<(ti+1)}
ii. Calculate link costs, Pij for links (i,j) in feasible set L
iii. For each infected node, j ∈ I, select the incoming link (i,j) with the highest cost,

Pij, from the set of feasible links L and add it to the solution tree S.

However under the case of partial information, the nonlinear nature of the objec-
tive function, i.e., the multiplication of x and t, makes the formulation for the partial
information case very difficult to solve. The introduction of the t vector as a variable
rather than a set of inputs restricts the set S from being solved directly and instead
must be solved for simultaneously with the set of timestamps. Because the link costs
are no longer constant, rather a function of the timestamps, the proposed full
information algorithm can no longer be used to find an optimal solution. The
resulting problem is in fact a non-linear, non-convex mixed-integer program.

4.3 Partial Information Heuristic Solution Method

Due to the complexity of the mixed-integer bi-linear formulation presented in sec-
tion 4.1, the focus of this research is to develop a heuristic which exploits the bi-
linearity of the problem in finding good solutions. While approaches exist in the
literature to solve bilinear programs with mixed integer variables or jointly
constrained feasible regions, no such approach exists which can accommodate both
complicating factors concurrently. The non-convexity of the feasible region due to the
integrality constraints, and the changing nature of the feasible region, in particular the
extreme points of such a region, make the problem intractable. As such, the solution
algorithm presented in this paper involves identifying a set of feasible solutions from
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which improvements can be made through the solving of simpler problems. The
general outline of the algorithm is as follows:

i. Find a feasible solution by solving a linear integer program, which is an
approximation of the original bilinear objective.

ii. Fix the infection tree, and solve a linear program to find the optimal set of time
stamps.

iii. Fix the set of variables corresponding to the time stamps, and use a branching
procedure to find the optimal infection tree given the chosen time of infection
variables.

iv. Continue to iterate between steps ii and iii until solution converges.
v. Refine the optimal tree from step iv by systematically adding nodes to the tree

which increase its likelihood.

Each step is discussed in detail in this section.

4.3.1 Finding a Feasible Solution

Due to the complexity of the problem’s feasible region, finding a feasible solution to
the problem represents a non-trivial effort, and is in fact the most difficult and most
crucial step of the procedure. As the size of the problem can grow quickly with
respect to the network size, different pre-processing procedures were developed so as
to improve the performance of the algorithm.

In order to find a feasible solution, we replace the bilinear objective function (17)
with the linear approximation objective function shown below:

X
∀ i; jð Þ∈A

xij lnpij−lnqij þ l
X
j;lð Þ∈A

lnqjl

2
4

3
5 ð27Þ

The objective function (27) represents a linear approximation of the bilinear
objective function (although it retains integer constraints), where the difference in
time stamps is replaced by the infectious period. This model will hereby be referred to
as A_ILP. The formulation is further reduced because Δtij is no longer a part of the
problem, which removes the complicating constraint related to it. Because of the size
of the IP, and the fact that a linear objective function will not in general approximate
the bilinear objective function globally, preprocessing techniques were used to find
feasible solutions quicker. In order to accomplish this step Lemma 2 was established.

Lemma 2. Assume a feasible solution exists, i.e., one which satisfies the IP
constraints. If such a solution exists, then at least one solution exists where xij=1
for any tj> ti,tj<ti+1, and ij ∈ I.

Proof. Consider a feasible solution where xij=0, i.e., link (i,j) is not included.
Because j ∈ I, then ∃(k,j) ∈ A:xkj=1. We can construct a new feasible solution by
setting xkj=0 and xij=1. Changing the value of this variables will only affect con-
straints related to nodes i,j,k and links (i,j) and (k,j). Removing link (k,j) only affects
the constraint requiring node j to be infected once, which is satisfied by including link
(i,j). The infection timing requirements given by constraints (19) and (20) are
satisfied based on the conditions provided in the lemma. And because both nodes i
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and j belong to I, no further constraints need to be satisfied. This implies the new
solution is feasible, and therefore the lemma is proven.

The implications of this lemma are important in developing a more efficient
method to construct an initial feasible solution. We can exploit Lemma 2 to more
easily construct a feasible solution by adding any links that satisfy the conditions of
the lemma a priori. This procedure is defined in Algorithm 1. The objective of the
algorithm is to identify a set of link variables, xji, to fix a priori based on their
contribution to the objective function (27). To do this the variable
bestPredecessorValue (initialized to−∞) is created to identify the incoming link
for each node which maximizes the contribution to the objective function (27), such
that both nodes belong to I. The bestPredecessorValue variable is updated by
evaluating each incoming link ( j,i) for node i such that i,j ∈ I. The best incoming
link will be added to the solution, and its corresponding xji variable fixed to 1. Fixing
variables a priori will decrease the number of decision variables in A_ILP.
Additionally, the way in which they are fixed guarantees a feasible solution can be
obtained. The outline of the algorithm is outlined below.

Algorithm 1: Find Initial Feasible Solution 
Inputs:  
Infected nodes, ;  
for all

bestPredecessorValue
for all

if  bestPredecessorValue 

bestPredecessorValue 
end if 

end for 
set 

end for 

The next step of the heuristic is implemented to find a set of initial feasible
solutions, which is accomplished by solving A_ILP. Steps (ii)-(v) of the heuristic
exploit not only the optimal solution to A_ILP, but also intermediate solutions found
throughout the resolution of the problem. We solve A_ILP using a branch and cut
procedure which is implemented using a commercial IP solver. More precisely, after
fixing a sub-set of the links to be included in the tree (based on the output from
Algorithm 1), we solve A_ILP to optimality. While solving A_ILP we store a subset
of the feasible solutions found, which will be used as starting solutions in the
subsequent steps of the heuristic. Because we do not want to consider all feasible
solutions found while solving A_ILP, only feasible solutions which improve upon the
current best known solution in terms of the objective value (27) are stored.

The outcome from this procedure is a set of initial feasible trees, and correspond-
ing timestamps. Each tree/timestamps combination represents a starting point for the
remainder of the heuristic which is computationally efficient to solve, and only
benefits from a more diverse set of initial starting solutions. Given an initial starting
solution (i.e., a fixed infection tree), the next step of the heuristic involves exploiting
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the bi-linearity of the problem to obtain two much simpler problems by fixing one set
of variables at a time, and then iterating between the sub-problems to increase the
likelihood of the tree. In one sub-problem the set of links x included in the initial
solution are fixed and the optimal timestamps for the zero-infection nodes included in
the tree are sought. In the second sub-problem the timestamps, t, are fixed for the
same set of nodes, and the optimal set of links are sought.

4.3.2 Finding Optimal Time Stamps

Fixing the x (infection pattern variable) vector linearizes the objective function (17),
transforming the problem into a linear integer program with decision variable t (time
of infection). However, we are left with the complicating constraint needed to
determine the appropriate value of Δt. The formulation is shown below.

max
X

∀ i; jð Þ∈A;i; j∈I*
xij lnpij−lnqij þ

X
j;lð Þ∈A

Δtjllnqjl

2
4

3
5 ð28Þ

s.t. Δ tij ¼ t j − ti ∀ i; jð Þ ∈ A; i; j ∈ I* ð29Þ

Δtij ¼ min l; T−tif g∀ i; jð Þ∈A; i∈I*; j∉I* ð30Þ

tmax xij−1
� �

< t j−ti∀ i; jð Þ∈A; i; j; ∈I* ð31Þ

tmax 1−xij
� �þ l≥ t j−ti∀ i; jð Þ∈A; i; j∈I* ð32Þ

ti ¼ t fi ∀i∈I
* ð33Þ

0 ≤ ti ≤ T ∀i ∈ I�nI ð34Þ

We can remove the complicating constraint by introducing a new integer variable
si which indicates the region the timestamp of node i is in, and as such whether min
{1,T− ti} is equivalent to 1 or T− ti. If si=0, then 0≤ ti≤T−1. Alternatively, if si=1,
then T−1≤ ti≤T. We also simpify the notation by denoting A* to be the set of links
included in the initial feasible solution.

max
X

∀ i; jð Þ∈A*;i; j∈I*

X
j;lð Þ∈A

Δtjllnqjl

8<
:

9=
; ð35Þ

s.t.

Δtij ¼ t j−ti∀ i; jð Þ∈A; i; j∈I* ð36Þ
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Δtij≥l−siM∀ i; jð Þ∈A; i∈I*; j∉I* ð37Þ

Δtij≥T−ti− 1−sið ÞM∀ i; jð Þ∈A; i∈I*; j∉I* ð38Þ

ti≥si T−lð Þ∀i∈I* ð39Þ

ti≤T− 1−sið Þl∀i∈I* ð40Þ

tmax xij−1
� �

< t j−ti∀ i; jð Þ∈ A; i; j ∈ I* ð41Þ

tmax 1−xij
� �þ l≥ t j−ti∀ i; jð Þ∈A; i; j∈I* ð42Þ

ti ¼ t fi ∀i∈I
* ð43Þ

0 ≤ ti ≤ T∀i ∈ I*nI ð44Þ
While the program above is still an integer program, the timestamp variables can

now be relaxed to be continuous and will maintain integrality. As such, rather than
having to consider general integer variables, the problem is simplified to include only
binary variables.

4.3.3 Finding Optimal Infection Tree

Given a set of time stamps (i.e. t is fixed), the next step of the heuristic is to identify
the optimal set of links, x, branching to each node with a fixed ti which maximizes the
likelihood of the tree. Once again exploiting the structure of the master problem, the
objective function becomes linear when t is fixed. Furthermore, the Δt constraint can
be simplified because we only consider links which connect nodes with known
timestamps (i.e. ti is no longer a decision variable). The formulation is shown
below.

max
X

∀ i; jð Þ∈A
xij lnpij−lnqij þ

X
j;lð Þ∈A

Δtjllnqjl

2
4

3
5 ð45Þ

s.t.

Δtij ¼ min

max t j−ti; 0
� �

T−ti;
o
∀ i; jð Þ∈A

l

8><
>:

ð46Þ
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tmax xij−1
� �

< t j−ti∀ i; jð Þ∈A; i; j∈I* ð47Þ

tmax 1−xij
� �þ l≥ t j − ti∀ i; jð Þ∈ A; i; j ∈ I* ð48Þ

X
j∈N

xji ¼ 1∀i ∈ I*n0 ð49Þ

xij ¼ 0; 1f g∀ i; jð Þ∈A; i; j∈I* ð50Þ

The reduced problem has a very specific structure, as it is the integer programming
representation of a single root branching problem in an acyclic graph. This step of the
heuristic is equivalent to the full information version of the problem, and can be solved using
themethod described in section 4.2. The solutionmethod hinges on the acyclic nature of the
graph: unlike general branching problems, there is no need to check for cycles because the
time stamp constraints on links will ensure that no feasible links will produce a cycle.

The two steps of the heuristic, ii) fixing x and solving for t, and iii) fixing t and
solving for x, are iterated until convergence is reached (i.e. the set of links in the tree,
xij, does not change between iterations).

4.3.4 Refining Optimal Tree

The performance bottleneck in the heuristic is the fixed set of nodes included in the
initial feasible tree, which remain constant for steps ii and iii of the heuristic. More
specifically, the procedure used to find an initial feasible solution has two shortcomings:

i. The objective function is an approximation of the true objective function
ii. The set of nodes to be infected is fixed with the initial feasible solution.

While the steps of the heuristic following the identification of a feasible solution do
account for the true objective function, their inability to add nodes to the infection tree, i.e., a
fixed set I*, represents a limitation of the model. Therefore the final step of the heuristic is a
procedure to improve the current solution by adding links/nodes to the infection tree. In
particular a random greedy insertion method is implemented, which randomly selects nodes
excluded from the tree, calculates the potential improvement associatedwith adding the node
to the tree, and decides whether or not to include it. The improvement from adding a node is
the difference between the probability of no successful trial reaching the node (current case),
and the probability of one successful trial (the node gets infected) plus the probability of no
successful trials of the newly infected node (the node doesn’t infect any others).

In order to efficiently identify nodes which can potentially improve our solution,
we first calculate a node-based metric which represents the potential improvement
associated with adding any node to the current tree. The following three factors
determine the potential contributions of a new node j to the network:
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i. Assigning a timestamp to node j will affect the number of unsuccessful trials
between node j and all adjacent infected nodes.

ii. Infecting node j will require accounting for the appropriate number of unsuccessful
trials between node j and all adjacent non-infected nodes.

iii. Assuming a node i infects node j, the probability associated with excluding link
(i,j) will be replaced with the probability of including it.

Figure 2a and b illustrate the calculations necessary for evaluating the benefit of
excluding and including a specific node i, respectively, given nodes j,k and l are already
included in the infection tree. As shown in Fig. 2a, if node i is excluded from the infection
tree, the adjacent infected nodes could not have been infected by node i, therefore wemust
account for 1 unsuccessful infection trials between node i and infected nodes j,k,l. If node i
is to be included in the infection tree and if node iwas infected by node lwith a timestamp
ti=3, as illustrated in Fig. 2b, the number of unsuccessful trials between l and i is now 0,
and 2 between k and i. Furthermore, because the timestamp assigned to i is less than that of
j, we must now account for 2 unsuccessful trials from node i to node j. Finally, because
nodes a and b were not included in the infection tree, we must also account for the 1
unsuccessful trials between node i and nodes a and b. In general, the benefit of including
link (l,i) in the infection tree will depend on the sum of terms associated with it.

The algorithm for evaluating the inclusion and exclusion benefit of each node is
presented below as Algorithm 2. The algorithm is performed for a fixed number of
iterations (denoted as maxIterations). During each iteration, a given node i which is
not currently in the infected set I* is selected, and the benefit associated with allowing
this node to be infected, ln P (inc), is computed and compared with the benefit
associated with keeping it excluded from the infection tree.

First the benefit of inclusion is computed. In order to allow a new node to be
infected, we must also identify the node’s timestamp and predecessor, denoted by δ*

and ξ, respectively. The benefit of selecting each possible predecessor j is computed
by enumerating the possible timestamps for node i, indexed by δ, (based on a given

Fig. 2 Representation of the probabilities considered when calculating the exclusion (a) or inclusion (b) of
node i from the infection tree
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predecessor j) and calculating the benefit that infecting node i will have on every
adjacent node, indexed by k. This calculation varies depending on whether node k
belongs to the infected set I*, the timestamp of k, and the potential timestamp of i. The
benefit that infecting node i will have on an adjacent node k is equal to the expression
(ti− tk)ln (1−pki). Next the link-based benefits are summed to obtain the node-level
benefit for each timestamp and predecessor combination. For each node i evaluated
the best combination of predecessor ξ and timestamp δ* is selected.

After the benefit of inclusion is complete, the benefit of excluding the link, P(exc),
is computed, and equal to the probability that no adjacent infected node successfully
infected i. If the benefit associated with including the node i is greater than that of
excluding it, node i is added to the infected set, I* and the relevant link (based on the
optimal predecessor) with corresponding timestamp is added to infection tree.
Otherwise, the node remains excluded from the infection tree.

Algorithm 2: Node Addition 
Inputs: Infected nodes, ; Timestamps, ; Infection Tree, .  
iteration 
while   iteration  maxIterations  

Randomly choose 
ln(Probability of Inclusion), 
Predecesor 
Timestamp 
for all
 for to

for all
if

if

else 

end if 
else

end if 
end for
if

 j  

end if 
end for 

end for 

for all
if
end if 

end for 
if

end if
end while 
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5 Numerical Testing

This section details the procedure used to evaluate the performance of the heuristic
solution method proposed, and presents numerical results.

5.1 Measure of Performance

Although the solution method itself does not require the use of a stochastic simulation
model, one as defined in section 2.2 is used in to evaluate the performance of the
proposed methodology. The model performance is measured by comparing the set of
links (nodes) infected in the simulation-based scenario, K, with those predicted to be
infected by the model, S. We take the following steps to evaluate the performance of
the proposed methodology:

1. Randomly generate a network of the specified degree distribution, G ∈ (V, A),
2. Set the infectious period 1, specify link transmission probabilities, pij, and

specify level of information, p
3. Randomly introduce an infected individual into the network, 0
4. Simulate an outbreak for some preset time period, T
5. Extract the following information from the simulation to use for evaluating the

heuristic performance

a) Full set of links in the infection tree, K
b) The full set of infected nodes, N

6. Identify the set of information nodes, I, by randomly selecting p percentage of
nodes in N

7. Extract the following (required) information from the simulation to use as input
for the heuristic

a) The set of infected nodes in the information set, I
b) Timestamps for each known infected node, ti ∀i ∈ I.

8. Implement the heuristic (as described in section 4.3)
9. Identify the percentage of correctly infected links, q, and percentage of correctly

infected nodes, b in the model output tree, S.

a) q=|M|/|K|, where M is the set of infection spreading links identified by the
heuristic and included in the output tree S.

b) b=|J|/|N|, where J is the set of infected nodes identified by the heuristic, and
included in the output tree S.

10. Repeat steps (1)-(9) X times for a specified information level and degree
distribution, and average q and b (step 9.a and 9.b) over all X iterations.

The procedure outlined above returns the expected performance of the solution
methodology; Q (and B) which is how accurately S represents the actual spreading
scenario, on average for a specified network structure and level of information.

In addition to excluding infected nodes and links, the model also has the potential
to include additional links in the tree, S, which did not actually spread infection, as
well as incorrectly label uninfected nodes as infected. Therefore two additional
performance measures were computed which reflect the ability of the model to
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appropriately exclude uninfected nodes and links: i) the percentage of correctly
labeled links and ii) the percentage of correctly labeled nodes. These measures are
computed similarly to step 9.a and 9.b above, but account for all links (nodes) in the
network, rather than just the set of links (nodes) included in the infection tree,
therefore penalizing the model for over-infecting the network. The full set of perfor-
mance measures used to evaluate the model performance are listed below:

i. Expected percentage of correctly infected links: The percentage of infected links
which are correctly identified as infected by the model on average.

ii. Expected percentage of correctly labeled links: The percentage of all links in the
network which are correctly identified, as either infected or non-infected by the
model on average.

iii. Expected percentage of correctly infected nodes: The percentage of infected nodes
which are correctly identified as infected by the model on average.

iv. Expected percentage of correctly labeled nodes: The percentage of all nodes in
the network which are correctly identified, as either infected or non-infected by
the model on average.

Steps 1–9 were implemented to evaluate the heuristic performance for various
network structures and information levels. Given the stochastic nature of the conta-
gion process and the fact that the model performance will vary based on the size of
the outbreak and specific contagion process which occurs, each performance measure
was computed and averaged over 1,000 iterations to generate an expected
performance.

Lastly, the heuristic performance was evaluated as a function of outbreak size.
Specifically the expected percentage of correctly labeled links and nodes were
evaluated as the percentage of infected nodes in the population increases. The results
are presented for each network structure in Figs. 4, 6, and 8 under the assumption of
70 % information availability for the uniform and power law networks, and 75 %
information availability for the Poisson network (the information level is higher for
Poisson networks because of the time required to solve A_ILP to optimality 1,000
times). The results reveal behavioral patterns of the contagion process as a function of
network structure, as well as illustrate the model performance as the percentage of the
population infected grows. Numerical results and discussion are presented in the
following section.

5.2 Numerical Results and Analysis

The model was evaluated for three different network structures with varying degree
distributions: power law, Poisson, and uniform. The parameters for the power law and
Poisson networks were set such that the average degree was the same for all
networks, and equal to 3. The set of networks used for numerical testing were
developed randomly so as to evaluate the performance of the algorithm over a wide
range of possible network structures and levels of connectivity. All networks evalu-
ated have 70 nodes, but the number of links varies depending on the degree
distribution and random construct.

The model performance for each network structure was evaluated under increasing
levels of information ranging from (0.7, 1), which represents the range from 70 % to
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100 % of infections being reported. For each criterion the expected performance of
the heuristic described in section 4.3 was compared with the performance of the
solution from A_ILP. Because A_ILP increases rapidly in size as the network size
grows and as the information level decreases, solving A_ILP to optimality proved to
be the computational bottleneck in the evaluation process (due to the large number of
iterations). However it should be noted that A_ILP does not have to be solved to
optimality in order to implement the proposed heuristic solution; it is the feasible
solutions generated while solving A_ILP which serve as the required starting points
for the heuristic, which are computationally much easier to obtain.

5.2.1 Power Law Network

The first network structure evaluated has a power law node degree distribution.
Various studies have found that power law networks are representative of many real
world networks, including social contact networks (Barabási and Albert 1999;
Gonzalez et al. 2008). Power law networks have a hub and spoke type structure with
few highly connected nodes, (known as super spreaders in the context of contagion
problems), while most nodes have a very low degree. Due to the extremely hetero-
geneous structure of power law networks contagion processes behave differently
compared with more homogenous network structures such as Poisson and uniform
networks. In addition a power law network structure is much more subjective to the
transmission properties of the disease; a low transmission probability translates to a
low probability of infecting a super spreader node, therefore an outbreak is less likely
to spread to a large proportion of the population. As the transmission probability
increases the probability of infecting a super spreader increases, significantly

Fig. 3 Percentage of correctly infected (a) links and (b) nodes, and percentage of correctly labeled (c) links
and (d) nodes for power law network structure. The dotted line represents the A_ILP performance, and the
solid line represents the heuristic performance
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increasing the likelihood of infecting a large portion of the population. This behavior
is illustrated by comparing Figs. 4 and 6 which display the outbreak size (as the
percentage of nodes infected) for 1,000 independent simulations of an outbreak on
power law and Poisson network structures, respectively. For the Poisson network
many more of the simulations resulted in a higher number of infections than in the
power law network.

Regarding the model performance, in Figs. 3, 5 and 7 the dotted line represents the
performance of the solution from A_ILP, and the solid line represents the performance
of the heuristic solution. Each of these figures represents expected performance for
each of the four criteria, averaged over 1,000 iterations for each information level and
network structure combination. From all three figures it is apparent that both the
A_ILP and heuristic performance improves as the information availability increases
for all performance measures, and that the heuristic substantially outperforms A_ILP
in node-level prediction, but not link-level prediction.

The performance improvement with information is expected, and is more
dramatic for the performance measures Q and B, the percentage of correctly
infected nodes and links, which only consider the accuracy of the model
predictions across the set of infected nodes and links. The reason the perfor-
mance improvement is greater for Q and B relative to the percentage of
correctly labeled nodes and links is because on average only 20 % of links
and 65 % of the nodes are included in the simulated infection tree for the
power law network, therefore each correctly infected node and link will have a
larger marginal impact for the performance measures Q and B in comparison to
the performance measures which account for the entire network structure (i.e.
percentage of correctly labeled nodes and links). The same behavior applies to
all network structures; therefore the performance measures are not included for
the Poisson and uniform networks. The correct labeling of the nodes and links
(above 90 % for both measures) suggests the uninfected nodes (and links) are
being appropriately excluded by the model.

Figure 3 also reveals the dominating performance of the heuristic relative to A_ILP
at the node level, but not the link level. The overall node-level performance of the
heuristic exceeds the link-level performance because it is possible for the heuristic to
correctly predict the set of infected nodes without correctly predicting every infected
link. Each network and contagion scenario will result in a set of infected nodes which
may exhibit many feasible (link-level) infection patterns. As such, it is possible for

Fig. 4 (a) Percent of correctly labelled nodes and (b) Percent of correctly labelled links by heuristic as a
function of outbreak size for power law network structure under 70 % information availability
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the heuristic to correctly predict a higher percentage of infected nodes than infected
links. The difference in node level and link level performance suggest that A_ILP
does a poor job at identifying the set of infected nodes, but a better job at identifying
the set of infected links; additionally, the heuristic is able to significantly improve
upon the set of infected nodes identified by A_ILP, but is unable to significantly
improve upon the set of links identified in the same solution. The node level
performance gap between A_ILP and heuristic is due to the accuracy of the node
addition step of the heuristic, until which the set of nodes is constrained to those
included in the initial feasible tree. The set of nodes added in this step can represent a
substantial percentage of the total infected nodes, often improving upon the A_ILP
solution by 60 %. However the set of links selected to branch to the newly added
nodes are not as accurately identified. This behavior is observed across network
structures.

In Fig. 4 the performance of the heuristic is illustrated as a function of outbreak
size, which is measured by the percentage of nodes infected during the outbreak. It is
apparent from the figure that the performance of the heuristic decreases as outbreak
size increases, which is an expected outcome of the model. For large outbreaks there
are more possible spreading scenarios, therefore the actual scenario is more difficult
to accurately predict. None the less, over 65 % of links and 80 % of nodes are
correctly labeled for all cases, and for nearly all outbreaks which reach less than half
the population, more than 85 % of nodes and more than 90 % of links are correctly
labeled.

5.2.2 Poisson Network

The second network structure evaluated was a Poisson network, which has a more
homogenous structure, with most nodes having close to the average degree distribu-
tion. For this network structure an outbreak is likely to spread to more nodes quicker
than in the power law network structure. In a Poisson network each infected node has
more links on average than in a power law network, therefore the link level prediction
is more difficult, and the performance is slightly lower for the Poisson network
(Fig. 5a) relative to the power law network (Fig. 3a). However for the Poisson
network the node level performance is slightly better for the heuristic and lower for
A_ILP, relative to the power law network (Figs. 3b versus 5b). In Fig. 3 the same

Fig. 5 Percentage of correctly infected (a) nodes and (b) links for poisson network structure. The dotted
line represents A_ILP performance, and the solid line represents the heuristic performance
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trends can be observed for the Poisson network as with the power law network in
terms of the performance improvement relative to information availability. In addition
the same trends regarding the heuristic performance as a function of outbreak size are
illustrated in Fig. 6. The main difference for the Poisson network is the larger number
of scenarios which reached a larger percentage of the population, which are harder to
accurately identify, thus the decreased performance.

5.2.3 Uniform Network

The last network structure evaluated was a uniform network, where all nodes
have the same average degree of 3. For the uniform network structure the
percentage of population infected in each scenario is more evenly distributed
relative to the Poisson and power law networks, resulting in smaller outbreaks
which can be predicted with greater accuracy (see Fig. 8). It is however
interesting to note that the larger outbreaks (greater than 80 % of the nodes
infected) are also predicted more accurately for the uniform network structure,
with 80 % of the nodes correctly labeled, relative to 70 % for Poisson
networks. As the most homogenous of the networks evaluated, the uniform
network resulted in improved heuristic performance at both the node and link
level relative to the other network structures. In contrast A_ILP performance
was poorest for the uniform network node prediction. Figure 7 illustrates a
similar trend in model performance relative to information availability.

Fig. 7 Percentage of correctly infected (a) nodes and (b) links for uniform network structure. The dotted
line represents A_ILP performance, and the solid line represents the heuristic performance

Fig. 6 (a) Percent of correctly labeled nodes and (b) Percent of correctly labeled links by heuristic as a
function of outbreak size for poisson network structure under 75 % information availability

Inferring Contagion Patterns in Social Contact Networks 423



6 Conclusions

The main focus of this research was to develop a formulation and solution method for
inferring a contagion process in a social contact network where only a selection of the
infections are known of. A heuristic solution method was proposed which exploits
known properties of the problem, and reduces to solving various simpler sub-
problems. The proposed methodology provides a novel procedure for evaluating a
region that has been exposed to infection (compared with the traditional methods of
enumeration followed by a posteriori analysis). The performance of the proposed
methodology was evaluated as a function of information availability and network
structure, and the heuristic was shown to accurately identify infection spreading links
and unreported infected nodes.

As expected, the performance of the heuristic decreased as the level of available
information decreased. With 80 % of the infections reported, the heuristic correctly
identified over 76 % of the infection spreading links and 86 % of the infected nodes
(for the power law network, which is known to be the most representative of social
contact network structures). Additionally, the heuristic continually outperformed
A_ILP by over 60 % in node-level prediction.

The novelty of the model lies in the use of network optimization techniques,
infection and contact data to infer spatiotemporal outbreak patterns, aiding in the
development of real-time analysis and decision support for outbreak scenarios. The
largest weakness with the proposed methodology is the lack of verifiability due to
limited data availability. Without accurate social contact networks and link-level
infection data to validate the model’s performance, it is not possible to evaluate
certain model characteristics. As such, one major motivation for this work is to
incentivize better data collection efforts. For the proposed model, collecting
contact-level infection data would be the most valuable. Contact level information
requires data from infected individuals on their recent social interactions. Such link-
level infection data is difficult to collect, but would permit quantitative analysis of the
models’ performance. Additionally research in the development of social networks
which more accurately depict the set of social contacts in a region will be integral in
the implementability of this research. One such approach is to exploit regional travel
patterns to define a social network. By using regional travel patterns (such as origin–
destination tables and activity-based travel patterns), individuals’ daily trips, specific
types of interaction, and length of interaction can be accounted for. With an accurate

Fig. 8 (a) Percent of correctly labeled nodes and (b) Percent of correctly labeled links by heuristic as a
function of outbreak size for uniform network structure under 70 % information availability
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depiction of individuals daily contact patterns, the proposed model can be
implemented to provide information on the set of contacts most likely responsible
for spreading infection during an outbreak, aiding in the development of regional
mitigation strategies.
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