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Inferring Contagion Patterns in Social Contact Networks
Using a Maximum Likelihood Approach

Lauren M. Gardner'; David Fajardo?; and S. Travis Waller®

Abstract: The spread of infectious disease is an inherently stochastic process. As such, real-time control and prediction methods present a
significant challenge. For diseases that spread through direct human interaction, the contagion process can be modeled on a social contact
network where individuals are represented as nodes, and contact between individuals is represented as links. The objective of the model
described in this paper is to infer the most likely path of infection through a contact network for an ongoing outbreak. The problem is
formulated as a linear integer program. Specific properties of the problem are exploited to develop a much more efficient solution method
than solving the linear program directly. The model output can provide insight into future epidemic outbreak patterns and aid in the develop-
ment of intervention strategies. The model is evaluated for a combination of network structures and sizes, as well as various disease properties
and potential human error in assessing these properties. The model performance varies based on these parameters, but it is shown to perform
best for heterogeneous networks, which are consistent with many real world systems. DOI: 10.1061/(ASCE)NH.1527-6996.0000135.
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Introduction

Many factors contribute to the spread and control of disease within
a region, such as the standard of living, infection prevention prac-
tices (e.g., vaccination), local programs (e.g., health, emergency
response), and, also critically significant, the interaction patterns
among individuals. Today, a large proportion of the population
lives in increasingly dense conditions, an ideal environment for
rapid disease transmission. The stochastic nature of the contagion
process (i.e., contact between an infectious and susceptible person
may or may not result in a new infection) makes it difficult to iden-
tify the path of infection or predict the impact that a new disease
might have on a region.

Over the last 100 years, significant research efforts have focused
on predicting the expected spreading behavior of contact-based in-
fectious diseases, exploiting characteristics of the population and
the disease itself. However, there have been limited research efforts
focusing on the use of future social network data: whereas current
social network models are abstract constructs where people are
anonymously represented, it is not unreasonable to expect develop-
ments in data collection (through Facebook, Twitter, Foursquare,
etc.) that will allow accurate mappings between known individuals.
Furthermore, spatial analysis of transport and communication net-
works that exploits these data sources is a growing area of research
(Candia et al. 2008; Gastner and Newman 2006; Schintler et al.
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2007; Erath et al. 2009; Wang et al. 2009; Gonzdlez et al. 2006,
2008) and has recently been expanded to include social network
modeling, specifically, the ability to reproduce spatial structure
and interaction between individuals for large-scale social networks
(Illenberger et al. 2013). The ongoing development of activity-
based travel models, which examine why, where, and when various
activities are engaged in by individuals (Lam and Huang 2003;
Roorda et al. 2009; Ramadurai and Ukkusuri 2010; Illenberger et al.
2013), as well as innovations in pedestrian modeling (Hoogendoorn
and Bovy 2005) present additional promising alternatives to gen-
erate social-contact networks in the future. Of significant interest is
the public transit system, which represents a potential catalyst in the
disease transmission process within metropolitan regions. Advan-
ces in public transit modeling can now provide detailed contact pat-
terns, including temporal patterns (e.g., bus travel time), and spatial
patterns (a function of the vehicle size and passenger volume)
(Nassir et al. 2012; Pendyala et al. 2012). Although these methods
will potentially allow accurate mappings among known individ-
uals, they do not provide a means to use the data for tracking dis-
ease transmission. As such, it is critical to develop methods that can
exploit these data as they become available.

The objective of the model proposed in this work is to infer the
spatiotemporal path of infection through a social contact network
for an ongoing outbreak scenario. This work specifically considers
contact-based diseases, which refer to the family of infectious dis-
eases that are transmitted from an infected to susceptible individual
through direct contact. This category includes sexually transmitted
diseases, various strands of the flu, SARS, and the common cold,
among others. In turn, the social contact network is representative
of the social interactions (e.g., through school, work, or home)
that occur among a group of individuals in a given time period
(e.g., a day).

Specifically, the problem approached in this paper considers the
case in which the structure of the network is deterministically
known (set of nodes and links), time-of-infection data are available
for all infected nodes, but no information is known about the in-
fection tree (i.e., the set of social contacts through which the disease
spread). The problem is formulated as a linear integer program.
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Instead of solving the integer program directly, a much more effi-
cient solution method is developed that exploits properties of
the problem. Specifically, a maximum-likelihood estimation pro-
cedure is implemented on a simplified acyclic network to effi-
ciently solve the problem. The proposed methodology makes
use of network-based optimization algorithms, network structure,
and disease properties to determine infection paths based on time-
dependent infection reports.

The novelty of the model arises from the utilization of optimi-
zation methods (rather than enumeration followed by a posteriori
analysis) to infer a contagion process through a network. The
model performance is based on how accurately it predicts the paths
of infection (which are extracted from simulation outputs). Further-
more, the model’s performance is shown to vary significantly as
a function of network structure and transmission probability, it
but performs best for heterogeneous networks, which are consistent
with many real world systems.

The proposed model specifically aims to

1. Provide a novel method for evaluating a region that has been
exposed to infection;

2. Provide insight into future epidemic outbreak behavior; and

3. Aid in the evaluation and recommendation of intervention
strategies.

In the application of the model evaluated in this paper, individ-
uals are modeled explicitly, and social contacts define the network
structure. In previous work by Gardner et al. (2012), similar meth-
odology was implemented to infer the most likely air travel routes
responsible for spreading the Swine Flu to unexposed geographic
regions. In Gardner’s paper, social contact networks were not con-
sidered, and the network structure was defined by the air traffic
system. In addition, the proposed solution methodology can be
extended to alternative contagion processes that occur atop known
network structures (e.g., tracking food-borne outbreaks that propa-
gate though a distribution network or computer viruses that spread
through a communications network). The remainder of this manu-
script includes a literature review of related epidemiology models,
problem definition, mathematical formulation and solution meth-
odology, followed by numerical results and conclusions.

Literature Review

Dynamic contagion processes impact copious network systems and
are therefore the focus of various studies within the emerging field
of network science. In addition to the transmission of infectious
disease through communities and biological systems (Murray
2002; Anderson and May 1991), the spread of information, ideas,
and opinions through social networks can also be modeled as a
contagion process (Coleman et al. 1966; Hasan and Ukkusuri
2013) as well as the global spread of computer viruses on the
Internet (Newman et al. 2002; Balthrop et al. 2004), power grid
failures in electricity markets (Kinney et al. 2005; Sachtjen et al.
2000), and the collapse of financial systems (Sornette 2003).
Of interest to this study is the propagation of disease through a
social contact network, which therefore will be the focus of the
literature review.

The infection rate and pattern of the disease-spreading process
through a network is dependent on both the parameters of the
disease (e.g., infectious period, level of contagiousness) and the
fundamental structure of the network. In efforts to predict expected
disease-spreading behavior and characteristics, epidemiological
models span from extremely generalized and simplified analytical
models to increasingly in-depth stochastic agent-based simu-
lation tools. Analytical models are used to quantify the statistical
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properties of epidemic patterns (Colizza et al. 2006; Balcan et al.
2009); however, they are unable to capture certain behavioral as-
pects of the dynamics of disease spreading and often lack detailed
information about the network structure. In contrast, agent-based
simulation models can be used to replicate possible spreading sce-
narios, predict average spreading behavior, and analyze various in-
tervention strategies for a given network and disease while
capturing a greater degree of detail, but in turn require a highly
detailed set of input data (Rvachev and Longini 1985; Epstein
et al. 2002; Eubank et al. 2004; Hufnagel et al. 2004; Dibble
and Feldman 2004; Cabhill et al. 2005; Dunham 2005; Meyers et al.
2005; Small and Tse 2005; Carley et al. 2006; Ferguson et al. 2006;
Germann et al. 2006; Ekici et al. 2008; Roche et al. 2011; Haydon
et al. 2003). The most recent and comprehensive models provide a
greater degree of realism but are difficult to implement within the
short time frames in which real-time control decisions must be
made. Large-scale simulation models can also be computationally
taxing, because multiple runs are required to accurately predict
expected outcomes.

There currently exists a gap in the literature that calls for
scenario-specific disease prediction models. Most contagion mod-
els predict future potential outbreak scenarios based on system-
wide information; however, they are not able to reconstruct the
contagion process of an ongoing outbreak to reveal information
about the current state of the network. Recent advances in disease
modeling have begun addressing this issue. For example, there are
models that use genetic sequencing data to analytically infer the
geographic history of a given virus’s migration (Drummond and
Rambaut 2007; Lemey et al. 2009; Wallace et al. 2007; Cottam
et al. 2008; Haydon et al. 2003). Often this approach involves first
enumerating all possible evolutionary trees, then assigning pos-
terior probabilities based on specifics of the respective virus’ mu-
tation rates. Additionally, the infection trees only include locations
where samples were available. Jombart et al. (2009) proposed a
novel approach to reconstruct the spatiotemporal dynamics of
outbreaks from sequence data by inferring ancestries directly
among strains of an outbreak using their genotype and collection
date. The “infectious” links were selected such that the number of
mutations between nodes is minimized. The idea of using infection
data to construct the most likely path of transmission is the high-
lighted goal of this paper. The proposed approach relies instead on
available infection reports, contact network structure, and disease
properties to infer the spatiotemporal path of infection through a
contact network.

The set of infection-spreading links identified by the model can
provide insight into the spreading behavior of a disease because the
contact types most likely to have spread infection are revealed.
The expected role that each type of contact plays in the disease-
spreading process can then be quantified. The methodology can
also be used to evaluate various intervention strategies by adjusting
properties of specific link types (e.g., removing or reducing the
transmission probability of certain school links to represent a
school closure) and comparing the resultant likelihood of a given
outbreak scenario. However, to implement this type of analysis, a
critical level of detail on the network structure is required, which is
just in the initial stages of becoming available.

Problem Definition

Using infection reports, contact network structure, and disease
properties, the methodology described in this section makes
inferences about infection-spreading patterns in a population. The
problem assumes an underlying contagion process that can be

Nat. Hazards Rev.

Nat. Hazards Rev., 2014, 15(3): 04014004



Downloaded from ascelibrary.org by JOHNS HOPKINS UNIVERSITY on 05/10/19. Copyright ASCE. For persona use only; all rights reserved.

represented on a network by a discrete-time, stochastic process.
The following terminology is used for the remainder of this paper:

1. t;, time stamps: the time period at which a node was reportedly
infected, or predicted to be infected;

2. pjj» link transmission probability: the probability that an in-
fected node i will infect a susceptible (and adjacent) node j
in a single time step; and

3. ), infectious period: the number of time steps an infected node
remains infectious (i.e., is able to infect others) following its
own infection; A can also represent the amount of time before
recovery, hospitalization, or some other type of removal from
the network.

The problem objective is defined as follows: For a given social
contact network that has been exposed to infection [Fig. 1(a)] and
known time stamps for all infected nodes [Fig. 1(b)], the authors
seek to identify the infection pattern (i.e., a set of contact links)
most likely to have produced the known (node level) infection data
[Fig. 1(c)].

The network G € (V, A) is formally defined by a set of nodes,
V, which represent a population of individuals; and links, A, which
represent physical daily contacts between individuals; N represents
the set of individuals that became infected during the time period
when population V was exposed to infection; / represents the set of
information nodes: a subset of the infected individuals N, which
were identified as infected (i.e., they visited a doctor, hospital, phar-
macy, etc.). The full information case is the focus of this paper, and
defined as follows: The complete set of infected nodes and the time
stamp, t;, for each infected node is available, i.e., I = N.

The relationship between the underlying contagion process and
the mathematical programming formulation are of specific interest
in regard to the problem definition. The link-based infection pro-
cess, the building block of the network-based contagion process, is
introduced first.

Link-Based Infection Process

The link-based infection process consists of a set of link trials that
are the basic building blocks of the network-level contagion pro-
cess. In other words, a given infection scenario at the network level
is the result of many individual link-based trials. Each link trial
consists of the following evaluation: At a discrete time step ¢,
assume node i is in an infectious state, node j is in a susceptible

t=6
]
o
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[ J
t=4
[ J
t=5

=8
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state, and the two nodes are connected by link (7, j) with a link
transmission probability p;;. A successful link trial is defined as
when node i infects node j in time step ¢, and occurs with prob-
ability p;;. The probability a link trial is unsuccessful is therefore
(I — p;j). A simulation time step ¢ is representative of the latent
period, or the amount of time between when an individual contracts
the disease and becomes infectious.

The timestamp of node i, ¢;, represents the time (e.g., day) at
which individual i was infected. The value At;; is the time differ-
ence between when nodes i and j were infected. If timestamps are
known for two directly connected nodes, where node i was infected
before node j, the probability that infection occurred between these
two nodes can be calculated using Eq. (1):

a;;=(1— pij)(A[‘jiwpij (1)

The first term represents the probability of one or more “infec-
tion delays,” and the second term represents the probability of a
single successful link trial. Similarly, the probability that the
link-based infection of (i, j) will never be successful is defined
as 7,;: over At;; consecutive link trials, all will be unsuccessful.
The value of ;; is given by Eq. (2):

vij = (1— pij)min{AtU)\} (2)

The expression is based on the assumption that node i has a
limited infectious period and remains infectious for A time units.
This assumption may not be valid for certain diseases (e.g., for
some sexually transmitted diseases individuals remain infectious
indefinitely). However, there are many diseases for which the
assumption of a limited infectious period is valid. It is assumed that
A is a homogeneous parameter for all nodes.

Now, consider a link selection variable x;;, which is equal to 1 if
link (i, j) is selected to be part of the infection tree, and 0 otherwise.
The probability associated with including link (i, j) is equivalent to
the probability of infection having occurred between nodes i and J,
and can then be expressed in terms of Egs. (1) and (2):

Aty—1) ¥ o (1)

mi(xi;) = (1= pyj)it Pii Vi) vV (i,j)eA (3)
When x;; = 0, the link is not included in the infection tree and
mij = ;- When x;; = 1, the link is included in the infection tree

°
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Fig. 1. (a) Sample contact network structure G € (V, A), and link transmission probabilities, p;;; (b) example of the node level information provided
(after an outbreak); set of information nodes, I are solid with associated timestamps, ¢;; (c) example of model output (arrows) predicting the infection

pattern; the node with timestamp, ¢ = 0, is the source
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and 7;; = ay;. In the next section, this result is extended to the
network level.

Network-Based Infection Process

This work treats the network-based infection process as an iterative
aggregation of individual link trials. The simulation model starts by
initializing all nodes to a susceptible state and randomly choosing a
set of nodes to be infected (O € V). Then, transmission of the dis-
ease is simulated over multiple time steps, ¢, for a predetermined
simulation period, 7. During each time step, all links that connect
infectious nodes and susceptible nodes are identified, and infection
trials for each such link are performed. If the link infection is suc-
cessful, then the newly infected node status is changed to “infected”
in the following time step. The node remains infected for A\ time
steps. After a node is infected for A time steps, its status is changed
to “recovered.” Once a node is recovered, it can no long transmit the
disease or become infected again (the equivalent of gaining immun-
ity or being removed from the network).

This process is representative of a discrete-time network
susceptible-infected-removed (SIR) contagion process. The SIR
model is a well-established stochastic simulation model used in
the epidemiological literature to model the progress of an epidemic
in a large population (Grassly and Fraser 2008). The simulation
model described previously forms the basis for the mathematical
formulation and evaluation presented in the remainder of this paper.
It follows that the aim of this solution methodology is to replicate
the actual infection tree for a specific outbreak scenario by exploit-
ing node-level infection information and the network structure.

Assumptions

Multiple simplifying assumptions are necessary to solve the pro-
posed problem. This work assumes:

1. A priori knowledge of the underlying social contact net-
work, G € (V,A);

2. The contagion process can be approximated as discrete-time
network SIR contagion process with known transmission
probabilities, p;;;

3. An individual can be infected at most once, and thus only
those diseases for which immunity is acquired after recovery
are considered,;

4. Known timestamps ¢; for the full set of infected nodes, N; and

5. Incubation period, A is a homogeneous parameter.

The first assumption is the most debatable of the five. Social
contact networks are difficult to characterize, as they are not
directly observable, and are also highly unstable. However, the
increase of social networking information available online and
improvements in activity-based travel modeling both contribute
towards the possibility of access to more detailed social contact
information in the future. Potential sources and methods for gen-
erating social contact networks are discussed and cited in the in-
troduction. Assumption two addresses the use of the SIR model,
which is used to simulate outbreak patterns in this paper, and a
well-established stochastic simulation model (Grassly and Fraser
2008). This simulation tool is therefore the best option to quantify
the performance of the proposed model. Quantifying the transmis-
sion probability is beyond this scope of this work, but remains a
highly researched topic among epidemiologists. Various methods
exist to quantify this parameter for known diseases; therefore,
the transmission probability is assumed to be available from prior
clinical and epidemiological studies for the disease in question. The
third assumption restricts the set of applications to those diseases
for which acquiring immunity restricts an individual from being
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infected more than once over the entire course of an outbreak.
Assumption four is based on the premise that information is made
available for all infected individuals (i.e., through some type of
medical authority hospital, private clinic, pharmacy). Although
the assumption of full infection data may seem limiting at the
present time, various online global health databases and real-
time reporting currently exist through organizations such as the
World Health Organization (WHO), Centers for Disease Control
and Prevention (CDC), Centers for Infectious Disease Research
and Policies (CIDRAP), and the International Society for
Infectious Diseases (through ProMED), among others. These data-
bases are becoming increasingly relied on for tracking outbreaks.
Assumption five requires an average incubation period to be ap-
plied homogenously across all individuals.

Method

In this section, the mathematical formulation and solution method-
ology for the full information case are presented. First, the partial
information case is briefly discussed, and a linear programming
formulation for the full information case is provided. The solution
method for the full information case is then described.

Mathematical Problem Formulation

The linear integer programming formulation and proposed solution
methodology for the full information case follows:

mef(.X) = H (1 _pij) (8 ”_1>le 71/ ) (4)
V(i.j)eA
S.t.

tmax(xij_l)<tj_ti v (l’]) €A (5)
tmax(l —x,,)+)\2t,—t, \4 (l,]) €A (6)
Y xi=1 VieN\O (7)

JEN
x; ={0,1} V (i,j)eA (8)

The decision variable is x;;, which is set to 1 if link (i - j) is
included in the infection tree and O otherwise. The objective
[Eq. (4)] enforces that the set of links included in the final spanning
tree maximizes the likelihood of the tree; the product of the indi-
vidual probabilities corresponding to each link included in the tree,
as defined in Eq. (3). The first two constraints enforce consistency
between the x variable and the contagion process: if x;; = 1, mean-
ing i is the predecessor of j in the infection tree, then Eq. (5) guar-
antees that the infection time of j will be later than that of i. Eq. (6)
ensures that that the infection period of j will be within the time
period when i is infectious, i.e., within A time units of the infection
time of i. The variable 7,,,, is set equal to the largest time stamp, and
representative of M in the Big M method traditionally used for solv-
ing linear programming problems. Eq. (7) enforces the spanning
tree structure of the solution; every known infected node, except
the source node, is infected exactly once (i.e., has exactly one in-
coming link). Eq. (8) declares the decision variable x;; to be binary.
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Link Cost Transformation

The objective function [Eq. (4)] can be transformed from a product
of terms to an equivalent summation of terms by maximizing the
natural logarithm of the objective function, which results in the
following:

max Z xii[(At—1)In(1 = p;;) +1Inp;; —Iny] +1ny; (9)
V(i.j)eA

The new formulation features additive terms rather than multi-
plicative terms. The set of constraints remains the same with the
addition of (/1) the new link cost function definition:

max f'(x) = > xPy (10)

v(i.j)€A
S.t.

tmax(Xij— 1) <t;—1; VY (i,j)€A (12)
(1 = X)) + A2t =1, ¥V (i,j) €A (13)
d xi=1 VieN\O (14)

jeN
x;=1{0,1} V(i.j)eA (15)

Solution Methodology

Egs. (10)—(15) allows one to exploit specific properties to develop a
much more efficient solution method than solving this linear pro-
gram directly. As stated previously, this work seeks the most likely
infection-spreading pattern for the full information case. The prop-
erties of the full information case result in a spanning tree that
branches to every node i € N. The general problem of finding a
directed maximum branching tree can be solved using the algo-
rithm developed by Edmonds (1967). The algorithm consists of
maintaining an optimal subnetwork that reaches every node and
works towards feasibility by replacing links that form a cycle in
that subnetwork. As such, the cycle-finding subroutine of the algo-
rithm is the most computationally taxing part of the algorithm.

Although Edmonds’ algorithm is relatively efficient, a signifi-
cantly more efficient algorithm is developed here by exploiting the
problem properties already presented in this section. Attention is
first focused on Eqgs. (12) and (13), which allow for the efficient
pruning of the set of links that must be considered as part of
the procedure. The resulting network is acyclic, which greatly sim-
plifies the maximum branching procedure.

Let the set of feasible links (i,j)eL be such that
t; <t; < (t; + A). It is trivial to show that in all feasible solutions,
xp; = 0 for all links (k, /) in A\L. Therefore, focus can be limited to
the link set L. Because of Eq. (12), which requires feasible links in
L to connect nodes with increasing timestamps, the resulting sub-
network has a topological ordering, and as such, cannot contain any
directed cycles. Eqs. (14) and (15) represent the requirement that
exactly one incoming link is chosen for every infected node. As
such, any solution that only chooses links in L so that every node
has exactly one incoming link will be feasible. The mathematical
program can be written as follows:
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S.t.

dxi=1 YieN\O (18)
JEN
x;=1{0.1} V(i.j)eL (19)

The most computationally intensive portion of Edmonds’ maxi-
mum branching algorithm is the search for and removal of cycles.
Because of the acyclic nature of the set L, a simplified version of
Edmonds’ algorithm can be developed that is significantly more
efficient, defined by steps 1-3:

1. Define the set of feasible links, L = {(i, j):t; <t; < (t; + ) };
2. Calculate link costs, P;; for links (i, j) in feasible set L using
Eq. (17); and
3. For each infected node, jeN, select the incoming link (i, j)
with the highest cost, Pjj, from the set of feasible links L,
and add it to the solution tree S.
The set of selected links S forms the maximum likelihood tree.

Network Structures

The network structures evaluated in this work are intended to
represent social contact networks. Two types of networks are
constructed:

1. Randomly generated: The structure of the network (number of
contacts per individual) is determined by a prespecified degree
distribution; and

2. Activity-based: The network structure is generated using
regional demographic characteristics and human activity
patterns.

For a given network, links may have homogenous transmission
probabilities, p, or heterogeneous transmission probabilities, in
which case, each link is assigned a transmission probability, p;;.
This transmission probability can be a dependent on the type of
interaction between the two individuals i and j, (e.g., school, work,
social). The actual transmission probability values are dependent
on the specific characteristics of the disease in question and are
not the focus of this study. Therefore, the values selected for the
analysis are not specific to any particular virus, and a analysis is
conducted to evaluate the sensitivity of the model performance
to changes in these parameters.

Urban Network

The urban network generated is representative of a social contact
network for a community of individuals that interact on a daily ba-
sis though activities such as school and work. In the future, this
information could be made available by activity-based travel mod-
els or online social network data. However, the sample network
analyzed in this paper was created using a synthetic data set con-
sistent with the demographic characteristics of Travis County,
Texas, taken from the 2008 U.S. Census Bureau (2008).

The urban network has multiple link types, dependent on the
type of trip-based contact (e.g., school, work, social) and corre-
sponding heterogeneous link properties (activity-based transmis-
sion probabilities). For example, a node (representing child A)
might have two school links (connecting child A to child B
and child C) representing contacts at school, and a social link
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representing contact with a neighbor they interact with after school.

A social link and school link can have different link transmission

probabilities. The network structure is defined by the set of nodes

and the complete set of link types. For a set number of nodes the
number of links in the network will vary as a function of the level of
connectivity specified when generating the network. To generate
the network, the following steps were taken:

1. Randomly assign an age to each node selected from a given
age distribution;

Assign all individuals to households either of size 1, 2, 3, or 4;

Assign all children (individuals under 18) to a school;

Assign all adults (individuals 18-65) to a place of work;

Create link connections:

a. Connect all individuals who share a household with prob-
ability 1 (if two individuals share a home link, then they
don’t share any other links);

b. Connect all children at the same school to each other with
a probability 0.2;

¢.  Connect all adults assigned to the same work office with
probability 0.1;

d. Create random shopping links between any two nodes
with probability 0.01;

e. Create random social connections between any two nodes
with probability 0.005; and

6. Assign link probabilities p(), dependent on link type.

The generated network has 250 nodes and 979 links. The trans-
mission probabilities p() and link connectivity probabilities used
for the base case are listed in Table 1. The urban network created
is a relatively homogenous network structure; the majority of nodes
have degree values close to the network average. The network de-
gree distribution is most similar to a Poisson distribution, with an
average degree approaching nine. To contrast this type of network
structure, the model performance is compared with various power
law network structures.

The probabilities used to connect this network and the corre-
sponding transmission probabilities are not representative of any
specific virus. Because the networks presented here are intended
to evaluate the proposed methodology, region-specific structural
inaccuracies are not yet of vital importance. That being said, devel-
oping accurate input data remains a valuable future research prob-
lem, specifically (1) calibrated transmission probabilities based on
historical outbreak data, and (2) social contact networks extracted
from activity-based travel models.

Al

Power Law Networks

Power law networks are the most common structures used to re-
present social contact networks, which warrants their inclusion

Table 1. Urban Network Parameters for Base Case

in this analysis (Gonzdlez et al. 2008). Power law networks have
a degree distribution f(x) = ax*. In this analysis, the exponent
parameter k is in the range [1, 3]. The higher exponent k corre-
sponds to a more heterogeneous degree distribution. As k ap-
proaches one, the network structure begins to display more
uniform degree characteristics. In addition, the number of links in-
creases significantly as k decreases, for the same number of nodes.
This is because (for the same number of nodes) there are more no-
des with a higher number of connections. The networks are gen-
erated according to the method developed by Viger and Latapy
(2005). For the power law networks generated, the transmission
probabilities are assumed to be homogeneous and are analyzed
across a range of values, (0, 1).

Measure of Performance

The proposed methodology is likely to perform differently
depending on the network structure and properties of the disease.
Therefore, sensitivity analysis was conducted to compare the per-
formance across various combinations of network structures
(urban, power law), network sizes (in terms of number of nodes),
and disease parameters (transmission probabilities). Although the
solution method itself does not require the use of a microscopic
level stochastic simulation model for implementation, a simulation
model capable of replicating the progress of an epidemic in a large
population was used in to evaluate the performance of the proposed
methodology. The model performance is measured by comparing
the set of links identified in the simulation-based scenario, K
(e.g., the actual set of infection spreading links), with those iden-
tified by the model, S. The following steps were used to evaluate
the performance of this solution methodology:

For a given network structure, G € (V,A), with known link
transmission probabilities, p;;.

1. Set the infectious period A and time period, T';

2. Randomly introduce an infected individual into the net-
work, O;

3. Simulate an infection spreading scenario for the time peri-
od, T;

4. Extract the Full set of links in the infection tree, K from the
simulation to use for evaluating the solution methodology;

5. Extract the following information from the simulation to use as
(required) input for the solution methodology:

a. Full set of infected nodes, N;
b. Timestamps for each infected node, t;Vi € N,

6. Implement the solution algorithm (steps 1-3 presented in
the solution methodology section) on the extracted net-
work G € (N, L);

7. Compute the percentage of correctly predicted links, g, for the
simulated contagion scenario:

a. Identify the set of links M € K, where M is the set of links

Parameter Value .
. in the output tree S;
Number of links . & b. q=|M|/|K|, that is the percentage of infection links
Probabilities used to create random network links - . .
Work 01 correctly identified by the model; and
Shopping 0201 8. Repeat steps (1)—~(7) X times and average ¢ (step 7.b) over all
Social 0.005 iterations.
School 02 The preceding outlined procedure returns the expected perfor-
Probabilities of transmission used in simulation mance of the solution methodology, Q, which is how accurately S
Home 0.2 represents the actual spreading scenario on average, for a given net-
Work . 0.1 work. For both network structures, Q is based on X = 1,000 iter-
Shopping 0.05 ations. This analysis is performed for various combinations of
Social 0.1 network structures, sizes, and disease parameters. The results are
School 0.1 . . .
presented in the following section.
© ASCE 04014004-6 Nat. Hazards Rev.
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Numerical Results and Analysis

The expected performance of the solution methodology, Q is
illustrated in Figs. 2 and 3 for the following network structures,
respectively:
1. Urban network
2. Power law network

The urban network used in this analysis has 250 nodes, 979
links, and the original transmission probabilities as defined in
Table 1, varying between [05, 0.2]. The power law network also
has 250 nodes, although with fewer links because of the heavier
tailed distribution (relative to the Poisson-characterized urban net-
work). The power law network used in this analysis has 379 links,
the exponent k is 3, and the transmission probability is set at a con-
stant value (p = 0.5) for all links

In the figures, each series represents Q for a constant infectious
period, A. The results illustrate a decrease in expected performance,
Q, as the simulation time, 7" increases. The value of Q also de-
creases as the infectious period, ), increases for a constant simu-
lation period, 7. These are intuitive results because of the stochastic
nature of the contagion process, for which the feasible solution set
increases with higher infectious periods and simulation times.

The same general behavior is observed for both the urban and
power law network structures, although Q performs better for the
power law network—remaining above 85% for all cases analyzed,
and above 90% for T < 9. In the urban network, Q remains above
80% for T < 7, but falls to 60% for higher (A, T) combinations. The
difference in performance among the networks can be partially
attributed to the network structures, specifically the high average
connectivity in the urban network relative to the power law net-
work. Power law networks have a hub and spoke structure, with

Urban Network Performance

8
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Fig. 2. Expected performance, Q, for urban network
Power Law Network Performance
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Fig. 3. Expected performance, Q, for power law network
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a small percentage of highly connected nodes (known as super
spreaders), with the majority of nodes having a very low degree
(one or two). In the case where the initially infected node is selected
randomly, a super spreader node in a power law network structure
has a low probability of being selected. In addition, the remaining
less-connected nodes have limited opportunity to spread infection,
therefore the disease is less likely to spread to a significant portion
of the population. In more homogenous network structures, such as
Poisson networks, most nodes have close to the average degree,
resulting in a more connected network. In a more connected
network a higher number of infections are likely to occur. The chal-
lenge in predicting the set of infection spreading links (the objective
of this study) is that a given set of infected nodes (specific to a given
contagion scenario) may correspond to multiple feasible (link-
level) infection patterns. Furthermore, for the same number of in-
fected nodes, a more connected network structure will have more
feasible infection spreading patterns, thus the likelihood of identi-
fying the actual infection tree is reduced. This reasoning explains
why the model performs better for the power law network com-
pared with the more homogenous urban network structure which
has an average degree distribution around 8. The same reasoning
explains the improved performance under shorter infectious periods
and shorter simulation times, for which the number of feasible in-
fection trees is minimized.

Sensitivity to Transmission Probability

As previously discussed, accurately quantifying the transmission
probability for a given disease is beyond the scope of this work.
However sensitivity analysis was conducted for urban and power
law network structures for varying transmission probabilities to
explore the model performance for different potential diseases.
In the analysis the infectious period and simulation time were kept
constant at A =3 and T = 10, respectively.

In Fig. 4, Q is illustrated for the urban network subject to
varying transmission levels (which increase along the x-axis).
The original transmission probabilities are inflated and deflated
by a constant factor, thus remaining proportional to the original
activity-specific values. The maximum inflation factor is five, at
which point some of the links take on a transmission probability
value of one. The maximum deflation is 0.01, which results in
many p;; values close to zero. These inflation and deflation factors
are chosen such that (0 < p;; < 1). The results are again averaged
over 1,000 iterations.

If all the transmission probabilities were zero or one, then the
exact scenario would be predicted for S because the infection pro-
cess would actually be a deterministic process, (with the exception
of arbitrarily broken ties, when two different nodes could have
resulted in the infection of a third). However, because the transmis-
sion probabilities vary across the links, this scenario is not possible
to replicate for the urban network. However, the figure shows Q
performs very well for extremely low transmission probabilities
(when the transmission probabilities are deflated to near zero)
due to the decreased level of uncertainty associated with the
infection process. Under this condition, the infection process is
nearly deterministic. The lower performance when the transmission
probabilities are midrange is a function of the extreme variation
in transmission probability values across links, which range from.
05 to 1, and the increased level of uncertainty in the contagion
process.

In Fig. 5 a similar analysis is presented for a power law network,
specifically exploring the robustness of Q to varying levels of
transmission probability. The power law network generated for
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Urban Network Sensitivity
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Fig. 5. Power law network sensitivity to transmission probability

this analysis has 1,000 nodes, 1,565 links, and the exponent £ is set
to 3. Once again A = 3, and simulation time, 7 = 10.

Initially (in Fig. 3), the transmission probability was set to p =
0.5 for all links. To illustrate the robustness of Q to the transmission
probability, Q is presented for 14 discrete values of p, ranging be-
tween (0,1) for the power law network. The results are averaged
over 200 iterations. In Fig. 5, Q is illustrated across the range
of link transmission probabilities for the network.

When the transmission probability is zero or one for all links
Q =1, this is representative of a deterministic case that can be
computed with 100% accuracy. For the nondeterministic cases
(0 < p < 1) the performance varies, with the lowest performance
corresponding to p = 0.5. This is intuitively the hardest case to
predict because there will be multiple infection scenarios with equal
probability. However, even for p = 0.5, the performance still re-
mains close to 90%. A likely factor in the high performance can
be attributed to the highly heterogeneous network structure.

The increasing performance as the transmission probability in-
creases from 0.5 can be explained using the known algorithmic
behavior for networks with homogenous transmission probabil-
ities: the link with the smallest infection delay is always chosen
as the infection-causing contact. More specifically, when all link
transmission values are identical, the link ranking will strictly de-
pend on the At;; value. The adjacent node i most recently infected
(min; At;;) will always be chosen as the predecessor node because
(1=p)"(p) > (1 =p)™(p), Y1 < n < m. This also means that, for
a given set of timestamps and homogenous p value, the algorithm
will predict the same spreading scenario. For higher p values, this
property is more likely to be accurate (higher transmission proba-
bility will more often result in immediate infection). Similarly, the
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decrease in Q as p increases from the deterministic case, p = 0,
can be attributed to the fact that a longer infection delay is more
likely to occur at lower transmission probabilities, although the link
with the smallest delay is always going to be chosen. Therefore, S is
less likely to replicate the actual spreading scenario.

Sensitivity to Transmission Probability Accuracy

The final analysis presented explores the sensitivity of Q to the
accuracy of the p value assigned. In the situation where a disease’s
properties are unknown, which is a likely situation at the onset of an
outbreak when the proposed methodology is intended to be imple-
mented, estimated values of the transmission probabilities must be
used. The previous analysis explored the model’s performance sub-
ject to known p values. To explore the robustness of the model to
the accuracy of p, a p’ value is selected which differs from the
actual p value by Ap:p’ = p + Ap. This estimated p’ is used
in the link costs to calculate S; Ap can be positive or negative,
as long as 0 < (p + Ap) < | and simply represents the inaccuracy
of the transmission probability value assumption. For example,
when p = 0.5 (this is the actual transmission probability that dic-
tates the behavior of the outbreak), and Ap = —0.3, S is deter-
mined using p’ =0.2 and not the true value, p = 0.5. This
represents a case where the disease is thought to be much less
contagious than it actually is. The value of Q is still calculated
by comparing the actual spreading scenario (here represented using
a simulation with a specified p), with the computed scenario, S,/
determined using p’. The impact of using p’ (instead of p) on
the model performance is illustrated by comparing Q, with Q.
These values are the expected performance under the original
assumption that the correct p is known when solving S,, Q,,
and the expected performance when p’ is used to compute S,/,
0,,AQ = (Q, — Q,), which represents the difference in perfor-
mance under the two information assumptions.

For the networks with a homogenous link transmission proba-
bility, the link infection probability, c;, is strictly decreasing in At
regardless of the value of p, and the exclusion probability v is the
same for any link that is not chosen. As such, a fixed deviation
affecting all links (e.g., all transmission probabilities are over/under
valued equally) will not affect the ordering with respect to link
costs, and therefore will not alter the inferred spanning tree S;
the adjacent node i most recently infected (min;At;;) will always
be chosen as the predecessor of node ;.

If the transmission probabilities are heterogeneous, inaccuracies
in the transmission probabilities will affect the ordering of links
with respect to their infection probabilities. For a constant Ap
across all links (pi’j = pij +Ap), the link infection prob-
ability o, = (1— Pi/j)(m_l)(l’;j) =[1—(pi; + AP)](AI_I)(PU' +
Ap), and the exclusion probability v/; = (1 — p,-’j)mi“{mf.f’*} =[1-
(pij +A p)|min{&4:A} The incoming link selected for a given node j
will be that which maximizes the product of all (feasible) incoming
link probabilities, [ [;c4, 7 (x;;), where A; is the feasible adjacency
list for node j. The same property holds for the homogenous case;
however, with heterogeneous links, the exclusion probabilities are
no longer equivalent.

For the following analysis, refer to the simple three-node net-
work illustrated in Fig. 6. By Eq. (3) if x; = 1, m; = oy and
if x;; = 0, then 7 = ;. The link included in the spanning tree
S will be that which maximizes ;7. If link (i, k) is selected
as the incoming link, then =y =y and 7y =17, and
(ixvjx) > (vikaj). Otherwise 7y =~y and 7y = ay. For
heterogeneous link probabilities, if v > vy, it is not
always true that a;vj > vja. In other words, the inferred
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Fig. 6. (a) Example network with link costs and possible infection link
selections for a network with accurate transmission probabilities, p;
(b) example network with link costs and possible infection link selec-
tions for a network with inaccurate transmission probabilities, p’
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Fig. 7. Urban network sensitivity to accuracy of transmission prob-
ability, p

spanning tree may vary (e.g., if scenario A occurs under the actual
transmission probability [as in Fig. 6(a)], scenario B’ may occur
under the estimated transmission probability [as in Fig. 6(b)].
Therefore, the initial ranking of adjacent links will not always re-
main constant, which will result in a different inferred infection
tree (S, # Sp1).

The model performance for the urban network, with inaccurate
heterogeneous link transmission probabilities, is illustrated in
Fig. 7. The Ap is chosen such that 0 < p;i < 1 for all links, and
the original link probabilities are those shown in Table 1. The re-
sults are highly robust for Ap values within the allotted range, with
a maximum reduction in performance of only 4%. This is an im-
portant behavioral property of the model due to the challenge of
accurately quantifying transmission probabilities.
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Conclusions

The main focus of this study was to develop a formulation and sol-
ution method for inferring a contagion process in a social contact
network. The proposed methodology provides a novel procedure
for evaluating a region that has been exposed to infection (com-
pared with the traditional methods of enumeration followed by a
posteriori analysis). The novelty of the model lies in the use of
network optimization tools, infection data, and the contact network
structure to infer spatiotemporal outbreak patterns, aiding in the
development of real-time analysis and decision support for out-
break scenarios. The network optimization model developed was
derived through a series of transformations and formulated as a
linear program. An extremely efficient solution method was devel-
oped to compute the most likely infection spanning tree.

The solution method was tested on two sets of networks, with
varying structures, characteristics, and degrees of heterogeneity. In
addition, the impact of human error in assessing the disease proper-
ties was quantified. Although the performance varied as a function
of network structure and transmission probability, the methodology
performed best for heterogeneous network structures. This is a
favorable outcome because heterogeneous structural properties
are characteristic of many real-world networks in which contagion
processes occur. In addition, the methodology performance was
shown to be robust to estimation errors in terms of transmissibility,
another favorable characteristic of the model due to the challenge of
accurately estimating disease transmission properties.

The largest weakness with the proposed methodology is the lack
of verifiability because of limited data availability. Without social
contact network structures and corresponding link-level infection
data to calibrate the model, it is not possible to truly evaluate certain
model characteristics. Therefore a major motivation for this work
is to incentivize specific data collection efforts. For the proposed
model, collecting contact-level infection data would be the most
valuable. Contact level information requires data from infected
individuals on their recent social interactions. Such link-level infec-
tion data are difficult to collect, but would permit quantitative
analysis of the models’ performance. Additionally, research in
the development of social networks that more accurately depict
the true network structure of a region will be integral in the imple-
mentability of this research. Research in activity-based travel mod-
eling can contribute towards defining social contacts. By using
regional travel patterns (such as origin-destination tables and activ-
ity-based travel patterns), individuals’ daily trips, specific types of
interaction, and length of interaction can be accounted for, also aid-
ing the transmission probability estimation.

Finally, the proposed model has multiple potential extensions
that will be expanded on in future work. One such extension in-
cludes the case of partial information. In a more realistic setting,
only a fraction of infected individuals will consult a physician, visit
a hospital, etc., limiting the availability of information. The objec-
tive of the partial information case will be to determine the most
likely set of infection spreading contacts when only a subset of the
infected nodes are identified, while concurrently identifying the
unreported infection nodes. The resulting problem is in fact a non-
linear, nonconvex mixed-integer program, which is computation-
ally intractable. As such, the focus of the research will be to
find efficient heuristics to solve the problem.
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