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Abstract

Background: The price of food has long been considered one of the major factors that affects food choices. However, the

price metric (e.g., the price of food per calorie or the price of food per gram) that individuals predominantly use when

making food choices is unclear. Understanding which price metric is used is especially important for studying individuals

with severe budget constraints because food price then becomes even more important in food choice.

Objective: We assessed which price metric is used by low-income individuals in deciding what to eat.

Methods:With the use of data from NHANES and the USDA Food and Nutrient Database for Dietary Studies, we created

an agent-based model that simulated an environment representing the US population, wherein individuals were modeled

as agents with a specific weight, age, and income. In our model, agents made dietary food choices while meeting their

budget limits with the use of 1 of 3 different metrics for decision making: energy cost (price per calorie), unit price (price

per gram), and serving price (price per serving). The food consumption patterns generated by our model were compared to

3 independent data sets.

Results: The food choice behaviors observed in 2 of the data sets were found to be closest to the simulated dietary

patterns generated by the price per calorie metric. The behaviors observed in the third data set were equidistant from the

patterns generated by price per calorie and price per serving metrics, whereas results generated by the price per gram

metric were further away.

Conclusions: Our simulations suggest that dietary food choice based on price per calorie best matches actual

consumption patterns and may therefore be the most salient price metric for low-income populations. J Nutr

2016;146:2304–11.
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Introduction

Poor diet quality is a major contributor to morbidity and
mortality globally, accounting for 11.3 million deaths and
241.4 million disability-adjusted life years in the world in 2013
(1). In the United States, although there have been small
improvements in diet quality over the last 10 y, the average diet
quality is quite poor, and disparities exist by socioeconomic
status. Food is perceived to be abundant in the United States,

and overconsumption of food is the major cause of the US
obesity epidemic (2). However, many populations do not have
easy access to healthier items such as fruits and vegetables;
lower-quality diets generally cost less per calorie than higher-
quality diets (3). Understanding the process that people use
in deciding what they eat is important because it can help us
to identify strategies that may help to improve diet quality
choices.

Price, taste, and convenience have been consistently cited as
the top features that people consider when deciding what types
of food to eat (4). Food price has received attention recently as
both a potential explanation for the generally poor diet quality
in the US population as well as the disparities in diet quality
(5, 6). Researchers have noted that time trends of aggregate food
price indicate that the price per kilogram of fruits and vegetables
has increased substantially, whereas those of sweets and oils has
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remained stable (7). Furthermore, some researchers have argued
that there is an economic incentive for populations with
restricted budgets to consume calorically dense foods and that
this may offer an explanation for the documented inverse
relation between income and obesity risk (8). However, this
argument is predicated on the assumption that people evalu-
ate the price of food according to price per calorie (PPC)8.
Drewnowski and Specter (8) and Drewnowski (9) demonstrated
that when food groups are evaluated according to PPC, the more
energy-dense foods are cheaper per calorie. However, it is
unclear whether consumers evaluate the relative cost of food
according to their cost per calorie or to other cost metrics.
Researchers have argued that consumers are more likely to
consider the cost per volume, weight, or serving when making
food decisions (10). The answer to which foods are most
expensive depends on which of these price metrics are used
(9, 10). This issue becomes especially important for under-
standing decision making among individuals with restricted
budgets, in which food price becomes the leading factor for food
decision making (11). It is additionally important when consid-
ering manipulating the price of food as a way of incentivizing
healthier diets.

Researchers have previously used simulation models to
study whether is it possible to make food choices that meet
dietary guidelines on a restricted budget. Computational
approaches, typically based on linear programming, have
been used to build such models (12). The use of linear
programming-based models has been limited to testing the
feasibility of following recommended diet guidelines in
regard to their cost or to finding ways to improve the nutritional
quality of food aid (12–18). To our knowledge, no studies have
used simulation models to evaluate the effects of the price
metric used by individuals with a restricted food budget on food
choice or to determine the price metric that leads to dietary
patterns that most closely match observational data. Given the
importance of the price metric on intervention design and food
policy, we believe such a simulation study would be a useful
addition to the existing literature.

We used agent-based modeling (ABM) for our simulation
approach because it can model individualized decision-making
processes and has the ability to generate patterns of behavior
through an emergent, button-up process (19). In our simulated
environment, individuals (agents) chose their food based on 1 of
3 price metrics: PPC ($/100 kcal), price per gram (PPG) ($/100 g),
and price per serving (PPS) ($/serving), whereas all other
factors (e.g., taste) remained unchanged. Serving refers to the
serving sizes of different food items (e.g., fruits and vegetables
or soups and fluid milk) as indicated by FDA reference amounts
customarily consumed (20). We used the food price data as
reported in another work (9). We refer to these 3 metrics as
PPC, PPG, and PPS, respectively. We used PPX to generically
represent any one of these metrics. These metrics form the
bases of the 3-food selection criteria that have been widely used
in studies of price impact on dietary intake (9, 10). The food
consumption patterns generated by each metric were compared
against 3 independent data sources to determine the food
choice approach that best matched the consumption patterns
observed in US populations.

Methods

Study population and design. ABM defines a set of agents, in our
case representing individuals, and a set of attributes for the agents. Agents

are able to perform a set of actions within a simulated environment. Our

ABM simulated the food consumption patterns of the adult US

population for the year 2001. We used 2001 because the PPC, PPG,

and PPS of the 9major food groups were available for this particular year

from previously published work (9). The simulated individuals in our

model were representative of the US population of adults >20 y old in

terms of age, sex, income, and dietary intake.

Databases. We used several databases to assign the parameter values of
the agents in our ABM. The Bureau of Labor Statistics (BLS) and US

census data were used to assign the demographic, income, and food

budget parameters of each agent (21, 22). NHANES data sets were used

to determine the diet compositions (23), and the USDA Food and

Nutrient Database for Dietary Studies (24) was used to obtain food price

values. Healthy eating index (HEI) data for NHANES participants (25)

and the 2005 International Comparison Program (ICP) data set (26)

were used to compare of our simulated results to actual data. Details

about the procedure for obtaining data from these databases and

employing them are provided in the following sections.

Demographics. We assigned age, sex, and income to our population of

agents based on data from the US Census Bureau and BLS. Age and sex

were assigned with the probability equal to the distribution based on

2001 US Census data (21). The income for each agent was based on the

distribution of income in the United States according to the BLS data set

for 2001 (22). Annual after-tax income from this data set was used for

our study. We used quintile data for the after-tax income of the total US

population from this data set. Each agent was assigned to one of the

quintiles with a probability of 20%. The agent�s income was randomly

generated with the use of the mean and SD for that quintile of income.

After initializing the whole population, we continued our simulations

only on those agents with the lowest 13% of income in the population

because our research question was particularly concerned with how

lower-income populations make dietary decisions. The choice of 13%

was a result of using the lowest 2 code values indicating income ranges in

the NHANES data set (23). We performed additional analyses for other

thresholds (Supplemental Methods, Supplemental Figures 1–3).

Food budget. To assign each agent a daily food budget, we used data

from BLS to find the mean and distribution of the proportion of annual

income spent on food. Because the data on the price of food (described in

the ‘‘Food Price’’ section) assumes that all food is prepared at home, we

needed to find the daily food expenditure as if all food were prepared at

home. BLS provides an estimate for food expenditures at home and food

away from home (FAFH); in 2001, FAFH was 42.2% of total food

expenditure. To find the daily expenditure as if all food were prepared at

home, we excluded the cost of any nonfood item from the FAFH portion

of daily food expenditure. By the nonfood portion, we mean any expense

other than the retail price of the consumed food, including labor, tips,

and any extra tax in restaurants. According to USDA reports (11, 27),

restaurant prices were 168.4% higher than retail food prices in 2001.

Accordingly, 63% [168.4/(100 + 168.4)] of FAFH was spent on nonfood

items. The food expenditure value was then updated by subtracting this

nonfood expense so that an agent�s food budget became equivalent to its

calculated diet cost. Both income and food expenditures were divided by

365 to give the daily food expenditure, which we call the food budget.

Diet composition. Assigning diet composition was a multistep process.
Briefly, our goal was to assign each agent an energy intake (EI) amount

based on their age and sex and a diet composition based on the percentage

of energy from the 9 major food categories described by the USDA and

identifiable in the NHANES data set (24). Specifically, each agent was

randomly assigned a total daily EI according to NHANES data for the

mean EI for each age category (20–39, 40–59, and 60–74 y) and sex with

the use of the mean and SD of these 6 distributions (2 sexes within 3 age

groups) as reported by Ford and Dietz (28). Agents� total EI did not

8 Abbreviations used: ABM, agent-based modeling; AIC, Akaike information

criterion; BLS, Bureau of Labor Statistics; EI, energy intake; FAFH, food away

from home; HEI, healthy eating index; ICP, International Comparison Program;

PPC, price per calorie; PPG, price per gram; PPS, price per serving; RSS, residual

sum of squares; SAD, sum of absolute differences.
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change with the budget constraints introduced later in our simulation.

This is because, in our model, it was assumed that total food intake is

determined by energy and not nutrient requirements (14); it was also

assumed that diet quality is affected before diet quantity in food-

insufficient households (29). Hence, the daily EI was not reduced for

agents with low budgets.

After assigning the total EI for each agent, the percentage of EI from

each major food category was initialized based on NHANES mean values.

We assigned the mean composition of the diet according to the USDA�s 9

primary food groups for 2001 (24): 1)milk andmilk products; 2)meat, poultry,

and fish; 3) eggs; 4) dry beans, legumes, nuts, and seeds; 5) grain products;

6) fruits; 7) vegetables; 8) fats, oils, and salad dressings; and 9) sugars, sweets,

and beverages. We refer to these groups as milk, meat, eggs, beans, grains,

fruits, vegetables, fats, and sugars, respectively. Themean proportion of total

energy from each of these 9 food categories was derived from NHANES

2001–2002 data with the use of USDA food codes in the NHANES 2001–

2002 dietary food recall data set (23) to identify food groups. The resulting

mean diet composition for adults had the following percentages of daily

caloric EI: 10.7%milk, 18.6%meat, 1.9% eggs, 3.1%beans, 33.4%grains,

4.8% fruits, 7.8% vegetables, 3.0% fats, and 16.6% sugars. Within the

ABM, the initial diet of each agent was represented by this tuple (list of

percentages). Changes in the diet (described in the ‘‘Food Decision-Making’’

section) were represented by changes in the values of the tuple, with the

restriction that the sum of percentages remained equal to 1 (100%).

Food price. The mean PPC, PPG, and PPS of each of these 9 food

categories was derived from previously published work (9). These data

were originally calculated with the use of the USDA Food and Nutrient

Database for Dietary Studies version 1.0 (24) and the Center for

Nutrition Policy and Promotion food prices database (30) and were

related to 2001. Mean and SD values for the unit prices of food were

used to randomly generate food prices at the beginning of our

simulation. Serving size (in grams) and energy density (kilocalories per

100 g) of various foods were also obtained from the same reference.

Food decision making. Agents in our model chose their food such that

their diet was as close as possible to the mean diet. However, we did not

allow the cost to exceed their food budget limit. This assumption was

based on socio- and ethnologic observations that have shown that low-

income populations maintain their identity and self-respect by retaining

familiar dietary patterns instead of purchasing the cheapest source of

nutrients to achieve a healthy diet (14, 31). The process that agents

followed in choosing their diet is shown in Figure 1. In this process,

agents started with their mean diet and calculated the cost based on their

own daily energy intake. If the cost for following the current diet was

higher than their daily food budget limit, agents updated the energy

proportion values by decreasing the caloric intake from a food category

that had a higher price perX, whereX designates the food metric chosen

for an ABM scenario, and balancing this decreased caloric intake by

increasing the intake from a food category that had a lower price per X.

Although the net caloric intake remained the same, the net cost of the

diet decreased because of the differential pricing of the 2 food categories.

The 2 food categories were chosen with probabilities proportional to the

values of the mean diet such that a higher value in the mean diet resulted

in a higher probability of being chosen as an increasing category and

lower probability of being chosen as a decreasing category. Details

about this process, along with technical aspects of implementation, are

provided in Supplemental Methods and Supplemental Figure 1. Each

ABM scenario (PPC, PPG, and PPS) was run separately so that we could

compare the results across the 3 price metrics.

With the use of the mean diet for determining the probabilities of

choosing the increasing and decreasing food categories, we allowed the

model to indirectly include all of the factors that can affect food decision

making of individuals, such as taste and convenience; i.e., we took the

mean diet as the expressed preferences of the population, thus account-

ing for taste, convenience, health, and other preferences. We assumed

that a higher proportion of energy coming from a specific food category

in the mean diet demonstrated a higher preference for consumption of

that food category. Hence, the mean diet foods with the largest

percentages of daily caloric intake had the highest probabilities of

becoming an increasing food category, whereas those with the lowest
percentages of daily intake had the highest probabilities of becoming a

decreasing food category.

To ensure that unrealistic diet patterns were not generated by our
model, we set minimum and maximum proportions of energy for each

food category with the use of the 10th and 90th percentiles from the

NHANES data set. These percentile values were calculated with the use

of the same process used to determine the mean diet.
Each simulation was performed over a 1-mo period, during which we

assumed that there were no changes in food prices and agent body

weights. The results reported are based on the mean food consumption

over this time period.Models were run 100 times. Each simulation lasted
30 s. The agents� population size was set to 201 million, which was equal

to the number of adults aged >20 y in the United States as of April 2000

(21). Our ABM was implemented in the NetLogo environment (32).

Comparison of simulation results with data. We compared the

results obtained from the 3 price-metric scenarios of our ABM to

several data sets to see which of the scenarios generated dietary
patterns that were closest to those observed in the data. First, we

compared the simulated percentages to total EI for each food category

to NHANES data. Total family income (variable INDFMINC) from

the NHANES 2001–2002 data set was used to determine individuals in
the lowest 13% bracket, who were of interest in our study. It should be

noted that we used BLS data (22) to initialize the income and food

budget levels of our agents rather than NHANES because the latter did
include food budget data.

FIGURE 1 Flowchart of the food decision–making process that an

agent uses to determine their diet (the portion of EI from each of the 9

major USDA food categories). An agent goes through this process

every day for a period of 30 d in every simulation run. Agents use 1 of

3 price metrics in each run. These 3 metrics are shown by PPX, which

refers to PPC, PPG, or PPS. EI, energy intake; PPC, price per calorie;

PPG, price per gram; PPS, price per serving.
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We then compared the mean HEI of simulated individuals in our

model to the HEI from the NHANES 2001–2002 population, as

calculated and reported by the USDA (25). Specifically, we used the
sequence identifications of NHANES 2001–2002 participants with

incomes in the lowest 13% of the income distribution to extract the

individual HEI component scores of the same individuals from the USDA

HEI data set. We used the reported scores for 5 categories of food
rather than the aggregated HEI score because the rest of the categories

in the original data set did not match our 9 food categories. The

ranges for these scores were between 0 and 10. The individuals who

followed the recommended USDA food guide pyramid servings
per day received the maximum score for the HEI component, and

those who consumed less than the minimum recommended amount

received the minimum score. People with dietary intakes within the
recommended and minimum recommended levels received propor-

tional scores (33).

We used income elasticity for food subcategories for the third

comparison of our simulation results. The original data were collected
through the ICP 2005 data set (26), and the elasticity values have been

reported by the USDA (34). The ICP data related to 2005; it has been

shown previously that the value of the income elasticity of demand

for various goods does not change notably over time (35). In our
simulations, we recorded the food consumptions of the simulated

population with baseline settings. The income level of agents was

then increased by 1%, and the new food consumption levels were

recorded. Income elasticity was calculated with the use of these

2 sets of values.

Statistical analyses. All analyses were conducted with the use of Stata

version 14.0 (StataCorp LP). Sampling weights, sampling units, and

strata were set according to NHANES analytic guidelines (22). We used

3 techniques to compare the results obtained from each of the 3 price
metrics: 1) sum of absolute differences (SAD) between simulated

results and actual data, 2) residual sum of squares (RSS) divided by

the number of data points, and 3) Akaike information criterion (AIC),

where AIC = n ln(RSS/n) + 2k, in which n is the number of samples used
to evaluate the results (i.e., the number of simulations) and k is the

number of food groups.

Results

Three sets of results are presented in this section. Figure 2

displays the percentage of total diet EI from 9 food categories
that was simulated with the use of the 3 price-metric ABM
scenarios. These results were compared to the calculated
percentages from NHANES data. The NHANES values show
the mean percentage of total EI from each category of food for
adults in the lower 13% income group. The SAD between

FIGURE 2 Percentage of total dietary en-

ergy from the 9 major USDA food categories

[milk (A), meat (B), eggs (C), beans (D), grains

(E), fruits (F), vegetables (G), fats (H), and

sugars (I)] for adults in the lowest 13%

income bracket calculated from NHANES

2001–2002 and simulated results with the

use of 3 price-metric scenarios. The ABM

results used the following criteria for decision

making: PPC, PPG, and PPS. Values are

means 6 95% CIs, and there were 100

simulations. Each chart refers to one of the

food categories indicated on the vertical axis.

ABM, agent-based modeling; EI, energy intake;

PPC, price per calorie; PPG, price per gram;

PPS, price per serving.
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simulated values and NHANES for all 9 food categories, RSS
(divided by the number of data points k), and AIC are shown in
Table 1 for each of the 3 scenarios. Results based on PPC showed
smaller differences from the actual data based on each of the 3
measures. For meat, eggs, grains, fats, and sugars, the PPC
predictions were closest to the actual intakes of NHANES
respondents. For beans, PPG results were closest. For dairy,
fruits, and vegetables, PPS results were closest to NHANES data.
In the fruits and sugars categories, the PPC results were still close
to the NHANES data because the 95% CIs overlapped with the
NHANES data.

In our second set of results, we used the simulated intakes to
calculate the HEI food component scores for the population and
compared these scores to the HEI food component scores of the

NHANES population. These results are shown in Figure 3.
Overall, the PPC and PPS price-metric scenarios performed
similarly (Table 1), with the sum of 5 absolute differences for the
3 methods being equal to 8.9 for PPC, 12.8 for PPG, and 8.8 for
PPS. For 3 of the 5 HEI component scores (dairy, meat, and
grains), the PPC scenario predicted intakes that generated HEI
scores closest to the actual HEI scores of the NHANES
participants. PPS values were closest to the actual HEI scores
for the fruits and vegetables categories. RSS and AIC values also
showed a similar pattern.

In our third analysis, we compared income elasticities
obtained from our model to data from the ICP (Figure 4). Based
on the ICP data, grains and fats are inferior goods because they
have negative values for income elasticity, meaning that as
people have more income they decrease the consumption of
these foods. Dairy and fruit products are normal goods, with
positive income elasticity values. All 3 simulated price-metric
scenarios generated negative values for the income elasticity
of fat, which was in the same direction as the ICP data. SAD,
RSS, and AIC values showed that the PPC scenario gener-
ated the closest patterns to the actual data (Table 1). The
95% CI for the PPC scenario predicted income elasticity for
fruits that overlapped the 95% CI for ICP. Once again, in 3
of 4 cases, PPC led to more realistic results than the other
2 scenarios.

Discussion

Among the 3 price-metric scenarios in our ABM simulations, the
PPC metric produced results that were most similar to data on
dietary habits. In addition, the PPCmetric produced results most
consistent with data on the sensitivity of dietary composition to
changes in income. These results are consistent with the ideas
put forward by Drewnowski and Specter (8). Although all 3
price metric scenarios generated results that were relatively close
to the data, the PPC metric generally outperformed the PPG and
PPS metrics.

TABLE 1 Comparison of simulated results obtained from
3 price-metric scenarios and actual data for the 3 experiments
reported in this article1

Experiment SAD RSS/k 2 AIC3

Total EI, %

PPC 36.24 27.51 2111.07

PPG 53.40 55.67 240.58

PPS 46.98 46.41 258.76

HEI

PPC 8.93 4.52 2714.68

PPG 12.84 8.15 2620.88

PPS 8.77 4.96 2467.27

Income elasticity of demand

PPC 0.73 0.07 2291.71

PPG 1.29 0.17 2232.76

PPS 2.83 0.78 2282.46

1 Smaller values are closer to actual data. AIC, Akaike information criterion; EI, energy

intake; HEI, healthy eating index; PPC, price per calorie; PPG, price per gram; PPS,

price per serving; RSS, residual sum of squares; SAD, sum of absolute differences.
2 k = 9 in the first experiment, 5 in the second, and 4 in the third.
3 AIC = n ln(RSS/n) + 2k, n = 100 in all cases.

FIGURE 3 Mean HEI score of simulated

individuals compared to NHANES 2001–2002

low-income adults for 5 food categories: milk

(A), meat (B), grains (C), fruits (D), and vegeta-

bles (E). Values are means 6 95% CIs, and

there were 100 simulations. HEI, healthy eating

index; PPC, price per calorie; PPG, price per

gram; PPS, price per serving.
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The following discussion may explain some of the dietary
patterns that were observed in the ABM results. We found that
agents that used PPC for decision making had a higher
consumption of grains. This may be because, based on our
food price data (9), the grains category had the lowest PPC.
Hence, under PPC decision-making rules, increasing grain
consumption was the most cost-effective way of maintaining
dietary EI while lowering the total food budget for the agents
representing the lowest 13% income group (Figure 2E). Simi-
larly, because fruits had the lowest PPG, the PPG scenario led to
the highest consumption of fruits (Figure 2F). Likewise, because
fats had the lowest PPS, the PPS scenario led to a high
consumption of fats (Figure 2H).

Another noteworthy result in our findings is that, for grains,
only the PPC scenario led to negative values for income elasticity
(Figure 4B). We believe this was because grains have the lowest
PPC among the 9 food groups. When an agent in our ABM had
more money to spend on food, the least expensive food group
had the highest probability of being replaced by more costly
foods.

Our simulation addresses several criticisms and difficulties
that have arisen in the literature on the cost of healthier foods
relative to less healthy foods. Two primary critiques have been
levied against the assertion that healthy foods cost more. The
first relates directly to the purpose of our article. It has been

argued effectively by Carlson and Frazão (36) that we do not
know whether people evaluate the cost of food based on PPC,
PPG, or PPS and that the answer of whether healthy food costs
more differs depending on which metric is used. For instance,
Carlson and Frazão (10) reported that, based on NHANES and
Center for Nutrition Policy and Promotion data sets, for all
metrics except for PPC, healthy foods actually cost less than less
healthy foods. With the use of similar data sets, Davis and
Carlson (37) also reported that no statistical support exists for
high energy-dense food being cheaper than low energy-dense
food. If people do use one of these other price metrics, it would
be difficult to argue that there is an economic incentive to
consume junk food; instead, other factors would be needed to
explain the disparity in healthy diets that has been observed
between high- and low-income populations. Our work sought to
address the question of which metric is being used, and we have
developed simulation models that incorporate these metrics for
food choice. Our comparison of model results to several large
data sets supports the assertion that low-income populations
evaluate food cost with the use of the PPC metric.

Second, in response to earlier findings that energy density was
negatively correlated with cost per calorie and that there may be
an economic incentive for low-income populations to consume
energy-dense foods, Lipsky (38) asserted that the finding was
likely an artifact and that a negative correlation between energy
cost and energy density will always be found because of having
calories in the numerator and denominator ($/kcal and kcal/g).
Others have used a variety of arguments to counter this assertion
and have found that the negative correlation could not be
reproduced with randomly generated numbers (39, 40). These
challenges were avoided in our work by letting the food
consumption patterns emerge through individualized decision-
making agents. In other words, our results were not obtained
with the use of an analytical method, and we did not study
existing food consumption patterns to form our conclusions as
did Drewnowski and Specter (8), Davis and Carlson (37), and
Schroeter et al. (41). Instead, we used a bottom-up approach to
generate those patterns with the use of agents that followed a
price metric and that adjusted dietary composition through a set
of simple rules. Although our model cannot be used for
addressing questions related to the negative correlation between
food price and energy density, it does suggest that actual
consumption patterns are consistent with the PPC price metric
for food decision making. By extension, foods that are relatively
cheap per calorie will be the preferred foods for low-income
individuals.

The limitations of this study are worth noting. In this work,
we assumed there was a single dominant price metric used by
low-income populations; a combination of the 3 price metrics
may be more realistic. The data used in this work relate to 2001.
Although this did not affect our methodology (i.e., comparing
agent-based simulations with data), more recent data may be
different from the 2001 data because of changes in dietary price
metrics. However, we would expect these differences to be small
because the relative prices of different types of foods did not
change substantially over this time period. For instance,
according to BLS annual consumer price index data sets, the
relatively more expensive food groups in 2001 (42) remained
relatively more expensive than other food groups in 2016 (43).
The mean annual inflation rate ranged from the lowest value of
2.9% for fats and oils to the 2 highest values of 3.6% for grain
products and 5% for eggs. Eggs contributed only 1.9% of daily
caloric intake, and the remainder of the food groups had
differences in the inflation rate of #0.7%/y (44). Our model

FIGURE 4 Income elasticity of demand for 4 food categories: milk

(A), grains (B), fruits (C), and vegetables (D). The values relate to the

low-income adult US population as calculated from the ICP data set

(reported by the USDA) and compared to the results from our ABM

simulations based on the 3 different food decision–making scenarios

(PPC, PPG, and PPS). The value for ICP in panel D is 20.001. Values

are means 6 95% CIs, and there were 100 simulations. CIs were not

available for ICP data. ABM, agent-based modeling; ICP, International

Comparison Program; PPC, price per calorie; PPG, price per gram;

PPS, price per serving.
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cannot be used to assess decision making among people who
spend more than the mean diet cost; in addition, it should not be
generalized to higher-income populations. This is not a severe
limitation because our study is on low-income individuals, for
whom price becomes the key factor of dietary behaviors
and for whom the strong relation between poverty and both
malnutrition and obesity are most relevant (45).

In conclusion, our findings suggest that low-income popula-
tions choose foods based on their PPC. These findings may have
important public health and policy implications. Specifically, the
relatively high PPC of healthy foods may be a substantial barrier
to eating these foods for low-income populations regardless of
their PPG or PPS. The results of our study indicate that
researchers, agencies, and policy makers should consider ways
of manipulating PPCs when considering ways of discouraging
low-quality diets and encouraging high-quality diets.
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