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Abstract

The decisions that individuals make when recovering from and adapting to repeated haz-

ards affect a region’s vulnerability in future hazards. As such, community vulnerability is not

a static property but rather a dynamic property dependent on behavioral responses to

repeated hazards and damage. This paper is the first of its kind to build a framework that

addresses the complex interactions between repeated hazards, regional damage, mitigation

decisions, and community vulnerability. The framework enables researchers and regional

planners to visualize and quantify how a community could evolve over time in response to

repeated hazards under various behavioral scenarios. An illustrative example using parcel-

level data from Anne Arundel County, Maryland—a county that experiences fairly frequent

hurricanes—is presented to illustrate the methodology and to demonstrate how the interplay

between individual choices and regional vulnerability is affected by the region’s hurricane

experience.

Introduction

Hazard-prone communities need to make reoccurring decisions on whether to make upgrades

to their built and natural environment, and if so, which upgrades to undertake. Their decisions

are based on a bevy of factors, including mitigation costs, their beliefs about the reoccurrence

and intensity of future hazards, their beliefs about the protection that upgrades offer, the losses

covered by insurance and a centralized government, and social norms [1]. While upgrades

generally reduce community vulnerability to future hazards, they may also change the charac-

teristics of the hazard itself. For example, coastal protection (e.g., flood walls, wetland restora-

tion) will lower the likelihood of future coastal surge events. This demonstrates how regional

vulnerability is a function of the complex interplay between infrastructure, hazard-mitigation

behavior, and the hazard itself.

Infrastructure vulnerability research has made significant progress in the past two decades,

and has generally focused on the impact that a single hazard event may cause. Cutter et al. [2]

say, however, that “these frameworks often fail to capture antecedent social factors that occur
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at the most local levels.” In this paper, we make progress toward lessening this gap by develop-

ing a modeling framework that can capture and quantify the interactions among hazard envi-

ronment, the behavioral response to risk, and infrastructure. This framework is useful for

analyzing the dynamics of community vulnerability as measured by potential to regional dam-

age [3, 4]. Vulnerability is assumed to be a time-varying, dynamic property dependent on indi-

vidual choices, the evolving building stock, and damage and not a static property (e.g., as is

assumed in [5] and [6]). Our framework can simulate the interactions of individuals who expe-

rience repeated hazards, their decisions to mitigate, and potential policy interventions.

Through simulation, we assess the time-dependent effects of behavioral scenarios on regional

vulnerability processes.

We use a broad class of simulation models as the computational platform, and the specific

type of model (discrete-event simulation, cellular automaton, or agent-based model) depends

on the assumptions made about whether individuals interact and the specific questions being

asked. In the simpler form of the framework, individuals respond to only their hazard environ-

ment. The decisions they make have no bearing on the decisions made by other individuals.

Their actions (e.g., to mitigate) change their physical state and their vulnerability in future haz-

ards. We consider this to be more in the spirit of discrete-event simulation models. In contrast,

it is possible that individuals in a region interact and change one another’s perception of risk.

For example, [7] shows that when one person mitigates, others in close proximity are more

likely to mitigate, even after controlling for other factors. Here, mitigation is an informal risk

communication method that changes individual beliefs to their vulnerability to hazards and

affects their decisions. This is more in the spirit of cellular automaton and agent-based models.

In the former, the region is divided into grids (e.g., parcels) and the state of each cell in next

time-frame depends on the current state of the cell and the current state of the adjacent cells.

Agent-based models simulate the actions and interactions of agents within a dynamic environ-

ment of interest [8]. More specifically, the decisions made by agents within the model could

affect the decisions made by other agents.

Regardless of the computational platform, physical hazard models can be integrated to sim-

ulate different hazard environments and the damage caused by these hazards. The model is

run over a span of many years to simulate the long-term evolution of regional vulnerability.

The modeling framework is capable of bringing insight into many questions including: (1)

how the intensity and frequency of repeated hazards and the resulting damage affect behavior

and decisions to mitigate, (2) how repeated hazards and individual decisions on mitigation

together influence the evolution of regional vulnerability over time, and (3) how regional vul-

nerability can be affected by behavior. For this last point, the framework allows one to compare

vulnerability resulting from behavior based on (3a) individual experiences to hazards, (3b)

influences from mitigation choices made by other members of the community, and (3c) policy

incentives. The framework is intentionally flexible and can be adapted for any natural hazard

for which homeowners can proactively mitigate and for a variety of behavioral assumptions.

The framework’s flexibility has another advantage in that it could aid regional-level policy

making aimed at reducing vulnerability. The framework does not demand, in any way, accu-

rate parameterization or calibration of regional hazards or behavioral responses—requiring

this for behavior is intuitively unrealistic given the deep uncertainty that exists. Also, given

conflicting estimates of how climate change will affect the frequency and intensity of some haz-

ards (e.g., see [9, 10, 11], accurate estimates about future threats might be equally unlikely.

Rather, the flexible framework allows researchers and decision-makers to test a variety of haz-

ard and behavioral assumptions via a large ensemble of scenarios and identify policies that are

qualitatively robust across a wide range of possibilities. A thoughtful perspective on this topic

is provided by Lempert [12].

Evolution of vulnerability of communities facing repeated hazards

PLOS ONE | https://doi.org/10.1371/journal.pone.0182719 September 27, 2017 2 / 29

Available: https://coast.noaa.gov/hurricanes/;

Historical Hurricane Tracks search query: "City of

Annapolis (Civil), Anne Arundel County, MD”

within a 120 nautical miles radius, using “All”

categories, “All” months, and “All” years. This

returns 72 hurricanes. Hurricanes that have

decayed sufficiently, such that its peak wind gust

in any location in Anne Arundel County is below

55mph, the minimum wind speed required for

damage, are discarded. 13 storms remain. An

identical process was used to collect the “Miami”

hurricanes. The term “City of Miami (Civil),

Miami-Dade County, FL" was used.

Funding: This work is funded by the National

Science Foundation (US), grant numbers 1149460

and 1331399. The support of the sponsor is

gratefully acknowledged. Any opinions, findings,

conclusions or recommendations presented in this

paper are those of the authors and do not

necessarily reflect the view of the National Science

Foundation, http://www.nsf.gov. The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0182719
https://coast.noaa.gov/hurricanes/
http://www.nsf.gov


The goal of this paper is to build and discuss the relevance of a coupled hazard-infrastruc-

ture-mitigation simulation model and to provide an illustrative example of how the framework

could be used. The flexible framework is comprised of interchangeable modules that can be

replaced with different physical models, behavioral assumptions, mitigation strategies, agent

interactions, policies, etc., to answer relevant and specific questions that planners may have

about their region and how regional vulnerability could evolve. The illustrative example is in

its infancy; it uses historical hurricane track data and couples this with a simplistic probabilistic

behavioral choice model that mimics how vulnerability could have evolved given varying frac-

tions of the population choosing different mitigation strategies. This could answer questions

like, “What would have happened if 10% more people who experienced damage during a hur-

ricane mitigated?” If the outcome is significant, it suggests that mitigation should be encour-

aged. Future iterations could contain more complex, but equally relevant hazard and

behavioral modules.

This framework is not intended to predict how the built environment may look at in the

future. Such a predictive method would need to incorporate a multitude of additional dynamic

factors, including zoning laws, local and national policies, social preferences and norms, socio-

economic environment, and regional productivity, and it would require extensive model vali-

dation. And, even if these factors are incorporated, deep uncertainty would still exist. Rather, it

is intended to show how regional vulnerability may change and provide a platform for assess-

ing these dynamics.

The first contribution of our paper to the literature is on developing a computational frame-

work that is focused on the interplay among mitigation decisions, infrastructure, and the haz-

ard. Additional contributions are in addressing the research questions (1), (2) and (3a-c)

above. We use a detailed example to illustrate the use of the framework in addressing these

research questions and to gain insights into the aforementioned interplay. In this illustrative

example, we track how vulnerability could evolve for the single-family residential buildings in

Anne Arundel County, Maryland, which experiences repeated hurricanes. We also show how

variations in the model parameters (e.g., the frequency or intensity of storms) can influence

regional vulnerability.

The paper is organized as follows. The second section provides a review on damage estima-

tion and vulnerability models for communities experiencing repeated hazards. In this review,

a key gap in the literature is identified: there are no quantitative studies of the influences of

individual mitigation behavior on community vulnerability and on the converse influence of

hazard intensity and regional damage on individual behavior. The third section titled “Meth-

odology” presents a simulation framework that addresses this research gap, as outlined earlier

in this introduction. The fourth section presents the Anne Arundel County illustrative exam-

ple, with an extensive comparison of community vulnerability under different hurricane envi-

ronments and behavioral and policy scenarios. The final section provides concluding remarks.

A review of existing literature

This paper draws from the literature in three key areas. The first area is estimation of physical

and economic damage resulting from a natural hazard. The second area is tracking the evolu-

tion of regional building stocks via two approaches: a top-down approach in which building

stocks evolve due to macro-level forces (e.g., changes to the building code), and a bottom-up

approach in which homeowners are independent, heterogeneous decision makers who choose

whether to mitigate. The third area relates the use of computational models, and more specifi-

cally, simulation models, to model complex systems and regional responses to hazards. The

remainder of this section discusses the key areas in more depth.

Evolution of vulnerability of communities facing repeated hazards
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There exist numerous vulnerability models to estimate both regional physical and economic

damage to buildings as a result of a natural hazard such as an earthquake or hurricane (e.g.,

[13, 14, 15]). The general approach is fairly consistent; first, a physical loading model (e.g., a

hurricane wind field model or an earthquake ground shaking intensity model) estimates the

relevant hazard loading parameters for each building in the spatial domain. Then either a

whole-entity or component-driven approach is used to convert hazard loading into probability

of building damage. This is described in more detail below. An economic loss function then

converts the damage states into economic losses. A stochastic simulation is typically used to

generate multiple replications of this stochastic process, either for a given hazard event or over

time with a defined stochastic hazard environment.

The whole-entity approach to assessing damage uses fragility curves. These curves represent

the probability of each possible post-event building damage state as a function of the hazard

loading on that building [6]. This is the method used in FEMA’s HAZUS-MH [16, 17]. The

component method estimates the probability of damage for the components of a single build-

ing and models the performance of the building based on structural engineering models while

considering interactions among different components [13, 18, 19]. This approach is more

complicated than the whole-entity approach and requires significantly more information

about each building and computational resources. It does, however, yield more accurate esti-

mates for individual buildings.

With some exceptions, studies examining regional responses to hazards generally do not

consider how housing inventories evolve over time, either from individual mitigation deci-

sions or other complex factors, such as land use change and societal preferences. Consider-

ation of how building stocks might evolve is critically important to gain insight into how

damage patterns might change, and what might be effective strategies for curbing emerging

damage patterns. Further, there has been increased focus on regional adaptation to natural

hazards [20, 21, 22]; understanding the drivers of mitigation can aid communities in encour-

aging cost-effective and inclusive adaptation.

A series of models developed by Jain and Davidson [5, 14, 23] consider changing building

stocks that result from modifications to building codes and population growth. These models

take a top-down perspective in that they focus on factors that influence similar households

equally. While these models are useful in isolating the effects of these specific changes, they do

not address the effects of household-level decisions to mitigate in response to damage or gov-

ernment (or e.g., insurance) incentives. That is, a bottom-up perspective is necessary to isolate

the effects from an organic regional adaptation process.

The bottom-up simulation approach is more individually focused and thus is dependent on

the individual choices that homeowners make. Peng et al. [24] and Kesete et al. [25] are recent

examples of models that take a bottom-up approach to understand how building stocks might

evolve. Both develop utility theory models of individuals’ decision to insure or retrofit houses

and focus on the strategic interactions between the insurers and homeowners. These groups

are assumed to have full knowledge of the hazard’s potential (i.e., probability density func-

tions) and want to maximize their utility. Furthermore, the homeowners are assumed to have

some degree of risk aversion. These models are important for showing regulators how strategic

interactions emerge among the many players in the “mitigation game,” what the consequences

of the interactions may be, and how they may be effectively ameliorated. However, descriptive

and behavioral economists eschew the notion that all individuals strictly follow the axioms of

rational choice. First, knowledge, cognitive, and time limitations exist [26, 27]. That is, in our

context, homeowners are typically not fully informed about the hazard and its consequences.

Even if they were, they still may not make the “best” decision because of the time and cognitive

resources required to parse out the “best” decision. Much of the knowledge that homeowners
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possess is developed over time and through experiences [28] or via social learning and norms

[29, 30]. That is, their knowledge of the threat evolves over time as they learn, though this con-

cept is not well studied within the hazard literature.

Bottom-up simulation models that explicitly explore decision-making of interacting agents

include cellular automaton models (CAs) and agent-based models (ABMs). In CA models, the

region is divided into a grid (e.g., parcels) and each cell within the grid (e.g., each parcel) is

assigned a state. In the next time step, the state is updated based on the current state and the

states of the adjacent cells [31]. This could be useful in the case of repeated hazards in situa-

tions where mitigation is spurred via the action of close neighbors. While CAs are common in

the hazards literature, they tend to focus more on the spread of hazards (e.g., forest fires and

volcanic lava, [32, 33] or land-use change associated with hazards (e.g., [34, 35]) and not a

broader view that focuses on individuals and their preparation in the time between hazards.

The other relevant class of models is ABMs. A distinct advantage of ABMs is that the inter-

action among agents and their environment produce complex emergent phenomena even

when relatively simple behavioral rules are used [36]. Additional value is derived from rigorous

sensitivity analysis, which shows how small changes to behavioral rules or the hazard environ-

ment could lead to macro-level effects. ABMs are commonly used to model water resources

planning [37], financial markets [38, 39], and land-use change [40, 41, 42]. The method, how-

ever, is relatively new to research related to community response to natural hazards and the

focus here tends to be on evacuation. For example, Chen et al. [43] and Chen and Zhan [44]

discuss evacuation prior to a hurricane and the potential effects of network congestion.

Methodology

We develop a flexible framework based on a simulation environment to track the effects of

repeated hazards in a region and to isolate the results of the mitigation choices made by area

residents or “agents.” The framework is comprised of many interchangeable modules that can

be incorporated to answer different questions. For example, different hazard modules could be

used to model (a) different hazard types (e.g., earthquake, hurricanes), (b) non-stationary haz-

ards (e.g., changes to hazard frequency and intensity resulting from climate change), (c) histor-

ical, synthetic, worst-case, etc. hazards. Similarly, different behavioral and learning models

could be explored. These are all highly relevant because differences in outcomes among these

modules show how sensitives the results are to behavior, the hazard environment, etc. This

could be used in two specific ways: to quantify the range of possible outcomes and to quantify

the importance of understanding the specific aspects of the region. For example, outcomes

that are similar despite vastly different behavioral assumptions suggest that an accurate assess-

ment of behavior may be less important for quantifying how regional vulnerability may evolve.

A feature of this platform that is highly relevant to our work is that it allows us to use agents

who are not restricted to be homogenous, well-informed and rational. We are able to populate

our model with heterogeneous agents who may be influenced by, learn from, and adapt to

their complex environment. By attributing unique, yet representative mitigation rules to area

residents and then by conducting sensitivity analysis of those rules, we do not seek to answer,

“What mitigation choices are optimal?” (e.g., as in [45]). Rather, we seek to build an in-silico

platform that provides insight into how regional vulnerability to repeated hazards is affected

by the decisions made by individuals.

Fig 1 illustrates our unified framework in which different regions, hazard environments,

building fragilities, and decision rules are incorporated via computer modules. We initialize

the model by choosing a hazard region containing multiple parcels. We implicitly assume that

an individual agent owns each parcel and that a centralized government or regional planner

Evolution of vulnerability of communities facing repeated hazards
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exists which may influence the choices of the individual agents and/or make regional changes

to the built environment and landscape. Our general framework can be applied to a multitude

of hazards, including hurricanes, earthquakes, and tsunamis.

The time-dimension used in the model is discretized into N yearly increments. As indicated

in Fig 1, the model has two phases for every simulation year: the damage phase and the mitiga-

tion phase. During the damage phase, regional hazard events occur and are downscaled to the

parcel level. The hazard could result in damage (e.g., structural damage, property damage, elec-

tric-power outages, injuries, etc.). In the mitigation phase, agents decide on possible mitigation

choices. Many behavioral models are possible for deciding how an agent will choose to miti-

gate among the possible mitigation choices. This cycle of phases is repeated for each of the N
years considered in a model run. The value selected for N depends on the specific questions

being ask by the model. For example, if the model seeks to identify the effectiveness of specific

policy interventions (e.g., requiring and enforcement enhanced building codes), a shorter

timeframe, such as 20–40 years might be relevant. However, in the present work, we are

focused on how communities respond to repeated hurricanes and how different policies may

impact this response over time. Hurricanes do not occur frequently in any one location, mak-

ing a longer time frame for the runs both appropriate and necessary. This study duration also

allows for us to answer questions such as “over what timeframe might an intervention start to

show benefit.” The illustrative example in the following section uses the region’s entire

162-year hurricane record.

Fig 1. Overview of our framework.

https://doi.org/10.1371/journal.pone.0182719.g001
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There are multiple sources of stochasticity in an N-year model run, so to quantify uncer-

tainties and identify trends, we generate a data set by repeating the model run M times. Con-

vergence testing is conducted to ensure that M is sufficiently large. The size of the model could

be quite large; the illustrative example that follows includes approximately 162,000 agents and

has a geographic size of 1523 square kilometers (588 square miles). Details on these simulation

steps are given next.

Within each simulation year, zero or more hazards could occur. As mentioned previously,

the hazard module that is selected could be one of many, including modules for different haz-

ard types, non-stationary hazard processes, historic hazards, synthetically-generated hazards,

etc., and selection depends on the specific questions being asked. Historic hazard data is prede-

fined before the simulation commences and limits the stochasticity of the model. This is

acceptable if the questions being ask follows the “what would have happened if. . .” logic. Syn-

thetically-generated hazards are probabilistically consistent with a region’ experience (or

expected future experience), but have not, necessarily, occurred. They can be predefined or

generated within the simulation. Many synthetic hazard generation methods (e.g., [46]) can

develop a hazard scenario in a very short amount of time. Each hazard’s characteristics are

then downscaled to the parcel level so as to measure the intensity of each parcel’s experience

and consequences are evaluated. The focus of the illustrative example in the following section

is on damage to residential buildings from hurricanes, but other consequences could be

assessed too. For example, Reilly et al. [47] assessed the likelihood of electric-power outages

due to hurricanes.

The following provides more detail of a damage module that quantifies damage to building

stock. First, a building’s resistance level reflects its quality of construction and ability to with-

stand a particular hazard. The lower the resistance level, the more vulnerable the house is to

that hazard. As a building is mitigated and its resistance level increases, the probability of dam-

age given the hazard intensity decreases.

The hazard intensity is coupled with the building characteristics (e.g., building type and

resistance level) to probabilistically evaluate damage by using FEMA HAZUS-MH database

[16] of building fragility curves. Fragility curves are probabilistic damage exceedance curves

and report likely damage levels as a function of hazard intensity, building type, and building

quality. Each resistance level has a unique fragility curve. Databases of fragility curves exist for

earthquake, flooding, and hurricane (wind) hazards and for numerous types of residential and

commercial buildings. These fragility curves are attractive because they are publicly available,

have a long history of development and testing [17, 48], and they have been widely used in

other hazard damage studies [5, 49].

We acknowledge that HAZUS fragility curves face criticism (e.g., they consider only 36

generic building classes and hence lack resolution) and improvements are possible (e.g., [50,

51]). Our study, however, is not dependent on these particular fragility curves; alternate fragil-

ity curves can easily be incorporated into our framework when they become available. Other

methods for finding structural and property damage could be relevant too based on the spe-

cific objectives (e.g., a component-drive approach [13, 18, 19]).

After a hazard experience, a building may experience no damage or be in damage states one

through four. While in reality damage is a continuum, discrete damage states are used for eas-

ier representation and binning of damage. Damage state one implies minor house damage,

potentially to a window or minor cracks in the façade. A house in damage state two experi-

ences moderate losses, such as toppling of masonry chimneys in an earthquake or extensive

damage to the roof cover in a hurricane. Damage state three implies extensive house damage

including cracks in the foundations (earthquake) or loss of the roof’s sheathing (hurricane). A

house in damage state four experiences complete failure and the structure is typically
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unsalvageable [16, 47]. We assume that if more than one hazard affects the region, each house’s

most severe damage state in year n is used. For example, if house i experiences two events in

year n, and its damage state in hazard 1 is three and in hazard 2 is one, then house i’s damage

state in year n is three. Damage is not assumed to compound in subsequent hazards in one

year. This is primarily due to limitations with the availability of fragility curves that express

compounding damage over subsequent hazards. However, should this type of fragility curved

become available, this assumption can be relaxed in future versions of the model.

Once consequences from the hazard are established in year n, the mitigation phase begins.

The mitigation phase can occur even when no regional damage is sustained. We assume that the

mitigation phase begins with agents learning, similar to when individual learns from their expe-

riences. This could affect the choices they make. Agents could update their beliefs over the likeli-

hood of a hazard, the intensity of the hazard, or the damage it might inflict. Learning can be

crude, (e.g., an agent reacts to an event but the event has no bearing on future decisions), or be

far more sophisticated and follow well-established human learning models (e.g., Bayesian learn-

ing and inference [52]). Reilly et al. [53] provides a brief overview of possible learning models.

Next, each agent must choose whether or not to mitigate and by how much based on a set of

decision rules and their understanding of the hazard environment. Additionally, it is possible

that a regional governing body engages in mitigation on a wide-scale (e.g., subsidize individual

mitigation, invest seawalls). More specific to housing damage, a house that is mitigated enters

into a higher resistance level. Mitigation can be minor (e.g., adding roof straps or raising

mechanicals), major (e.g., making structural changes to the building), or somewhere in between.

A variety of decision models for how agents choose to mitigate can be adopted and ulti-

mately compared. We collapse these decision models into four broad categories: (1) simple,

(2) cost-benefit, (3) complex, and (4) and policy. Simple decision rules are typically predefined

and easy to implement and loosely mimic the complex decision process that most area resi-

dents (e.g., homeowners) undergo. They could be as simple as if-then relationships (e.g., if a

house sustains damage, it returns to its original resistance level) or probabilistic (e.g., the likeli-

hood of a house upgrade to a higher resistance level is conditioned on the extent of damage

and current resistance level). When combined with rigorous sensitivity analysis, this method

can provide measures of macro-level effects from marginal changes in behavior.

Cost-benefit rules assume the costs and benefits can be described via a common unit of

measure (e.g., money, utilities) and the agents choose the mitigation alternative that offers the

best tradeoff between costs and benefits (e.g., [54]). This can become challenging when trying

to assess how agents might value and discount future benefits of mitigation alternatives in

highly stochastic hazard environments. For the purposes of cost, it is possible that costs extend

beyond the actual cost of mitigation. For example, adding shutters could detract from the aes-

thetic of the house. Generally speaking, this could be captured monetarily. However, some

mitigation efforts could detract from the structural integrity of the house. For example, fortify-

ing the roof increases its structural load. These types of “costs” are captured by the fragility

curves.

Complex decision rules for agents are formed using learning and decision models such as

Bayesian updating, utility theory, near-miss [55], bounded rationality [56], etc. Depending on

risk tolerances, a utility theory model could be construed as a cost-benefit model. Here, each

decision is typically stochastic and formed via an agent’s knowledge, which is conditioned on

previous experiences and possibly the experience of other agents, combined with its prefer-

ences, biases, and willingness to accept risk. An [57] provides an overview of incorporating

complex decision modules into ABMs.

It is important to note that not all decision models should be required to conduct a cost-

benefit analysis. First, the simple decision rules, like those used in the illustrative example and
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in many ABMs [e.g., [13, 58], show how certain (reasonably) assumed behaviors may affect

outcomes over time. For example, in this context, it could answer a question like “if individuals

exhibit some specific characteristic, how long might it take to reach some specific risk-reduc-

tion goals?” This could indicate how aggressive decision-makers may need to be to achieve

some community-wide objectives. Also, there is evidence that not all individuals rely solely on

a cost-benefit analysis when making decisions under risk. For example, prospect theory sug-

gests that biases could induce behaviors that appear otherwise irrational.

Finally, agents could be encouraged or required to mitigate as a result of policy intervention.

Here, a community-level policy is issued that either encourages or discourages an agent’s behav-

ior or changes an agent’s knowledge of the hazard. Policies may be simple (e.g., “1% of agents

respond to an incentive and mitigate to a higher resistance level”), targeted (e.g., “agents with

homes within 1 kilometer of the coastline are eligible for a mitigation subsidy”) [59], or complex

(e.g., structural economic models [60]). Further, they could be driven by the behavior or collec-

tive action of agents [47, 61]. Subsidies are not the only mechanism to induce mitigation. For

example, information campaigns can a cost-effective strategy for inducing mitigation by chang-

ing agents’ beliefs about their susceptibility to damage [62]. Using a simple policy model with-

out other decision models can help isolate regional vulnerability reduction when x% of agents

mitigate. However, it cannot capture the results of complex interactions between regional poli-

cies and individual decision-making. The degree to which agents interact dictate whether the

model is a discrete-event simulation, a cellular automaton model, or an agent-based model.

Empirical or observational mitigation data could, in theory, be used to parameterize a deci-

sion model. Recent survey work has shown why some homeowners choose to reconstruct and

mitigate [63]. These studies are helpful to measure the effectiveness of incentive programs tied

to mitigation at a regional level and in doing comparative studies across regions experiencing

hazards. However, these surveys are spatially and temporally limited and comprehensive dam-

age and mitigation records are generally not available. Spatial and temporal data on damage

and mitigation are necessary for a couple of reasons. First, each choice is simply one realization

of a complex underlying process that describes an agent’s decision-making process and this

process can evolve over time. Temporal data could shed light on this process. Second, Peacock

et al. [64] found mitigation decisions are typically tied to perception and understanding of the

hazard and past experiences with damage. This suggests that mitigation patterns are location

dependent and empirical data from one region should not be ascribed to another. Hence, it

was felt that existing historic damage and mitigation records would not provide the informa-

tion needed to parameterize the decision portion of our model. Should spatial and temporal

data become available, we would explore the use of such data in more detail.

Finally, it is possible that, depending on the questions being asked, the behavioral models

need not be empirically parameterized. Parameterization could be, for example, aspirational.

Researchers might want to know the possible effects of strong social norms on mitigation and

regional vulnerability to repeated hazards. Should they discover that strong social norms offer

little benefit compared to some other behavioral trait (e.g., recency biases) it suggests (1) poli-

cies to incentivize mitigation should not try to enhance social norms and (2) a starting place

for where social scientists should conduct more investigation, which, in this case, would be

biases and see, if, and how, they are present.

Illustrative example

Overview and scope

Our illustrative example focuses on Anne Arundel County, Maryland, and assesses how its

regional vulnerability evolves over time in the face of wind damage from repeated hurricanes.
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More specifically, we seek (1) to isolate how small changes to behavioral decision-making

affect long-term regional vulnerability (and thereby seek to keep other factors, like land-use

change, constant) and (2) to quantify the time durations that might be necessary to see certain

reductions in community vulnerability while assuming certain behaviors. The study also

examines the effects of governmental policies and more frequent and intense storms on com-

munity vulnerability.

Anne Arundel County is located along the Chesapeake Bay, and between Washington, DC

and Baltimore, MD (Fig 2). Its 2010 population is 537,656 [46]. We limit the study to the

approximately 162,000 single-family residential houses in Anne Arundel County. As such, the

model contains 162,000 agents who are each assumed to own the house in which they reside

and have the ability to conduct mitigation. The current illustrative example does not include

land use change and thus the number of agents remains constant.

The return period of a hurricane in Anne Arundel County is 12 to 13 years. Protected by

the Delmarva Peninsula to its east, its hurricane experience is milder than other regions along

the Atlantic Coast.

Inputs

Housing data are collected from the Maryland Department of Planning [66]. From this data,

we classify the County’s single-family building stock into 11 building types defined by the

HAZUS-MH based on construction material, dwelling type, and number of stories [12]. More

than 96% of the houses are wood-framed homes, with the remainder being a mix of unrein-

forced masonry, concrete, and mobile homes. The houses’ true resistance levels, i.e., their abil-

ity to withstand wind, are unknown. As such, we assume that initially 85% of houses have a

resistance level of one, 10% of houses have a resistance level of two, and 5% of houses have a

resistance level of three for wood-framed and unreinforced masonry houses and town homes.

Fig 2. Map of region. [65].

https://doi.org/10.1371/journal.pone.0182719.g002
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In addition, 95% of mobile homes and concrete framed houses are assumed to be in resistance

level one and 5% in resistance level two. The current building standard for wood-framed

houses in study area is resistance level one. Thus, we assume that vast majority of homes are in

this resistance level. Resistance levels are randomly assigned to each house at the start of each

simulation run. This information is summarized in Tables 1 and 2.

When agents mitigate, they increase the resistance level of their house, which in turn makes

them less vulnerable to high winds in future storms. Upgrades could include adding storm

shutters, improving roof connections, and adding tie downs for mobile homes. Each building

type has a unique set of mitigation options from which agents can choose. For example, agents

who own a wood-framed single-story house can change their roof connection, strengthen

their roof deck, add storm shutters, or change the shape of their roof. The order of upgrade is

dependent on the cost, with less expensive upgrades happening first. Occasionally, two

upgrades are approximately the same cost. In the situation where a homeowner chooses to

upgrade their house by one resistance level, she will choose either upgrade with a 50% proba-

bility. For example, a homeowner with a wood-framed house with roof straps who wishes to

upgrade by one resistance level will either install hurricane shutters or change the nail spacing

in her roof deck. Tables 1 and 2 and S2:2–S2:5 in the S2 Appendix summarize the mitigation

alternatives for each of the building types in order of increasing resistance.

We make some specific but reasonable assumptions for this model. First, agents maintain

their homes, and hence houses do not experience natural deterioration or reduction in resis-

tance level due to age. Also, land use change is not explicitly considered; only mitigation is. In

future iterations of the model, land use change will be considered when agents make decisions

both after hazards and in the years between hazard events. It is important to note that once

this occurs, possible home depreciation will be an important feature to capture, especially if

depreciation stems from risk perception or other risk considerations. This is especially impor-

tant if the house depreciates to a level where mitigation becomes no longer cost effective.

Also, we allow only homeowners who have experienced damage to upgrade their house’s

construction quality during reconstruction to be more resistant to future hazards. We term

this “damage-driven mitigation.” This is to hone in on the impact of previous experience to

damage. One hypothesize we could make is that if damage is typically minimal, it could make

agents more susceptible to severe damage in intense hazards and the analysis partially seeks to

find whether conditions exist that exhibit this.

Table 1. Description of the housing types, resistance levels, and mitigation strategies for wood-framed and unreinforced masonry houses.

Resistance

level

Wood-framed Houses Unreinforced Masonry Houses

(Building Types 1–5) (Building Types 6–9)

Mitigation Strategies Fraction in Corresponding

Resistance Level in Year 1

Mitigation Strategies Fraction in Corresponding

Resistance Level in Year 1

1 No mitigation 85% No mitigation 85%

2 Strap 10% Strap 10%

3 Strap + shutters 5% Strap + improved roof nail spacing 5%

4 Strap + improved roof nail

spacing

0% Strap + reinforced masonry 0%

5 Strap + improved roof nail

spacing + shutters

0% Strap + improved roof nail spacing

+ shutters

0%

6 Strap + improved roof nail

spacing + shutters + hip roof

0% Strap + improved roof nail spacing

+ reinforced masonry

0%

7 N/A N/A Strap + improved roof nail spacing

+ reinforced masonry + shutters

0%

https://doi.org/10.1371/journal.pone.0182719.t001
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For simplicity, we use the region’s historical hurricane record since 1851. These data are

gathered from the National Hurricane Center’s Historical Tracks Database [67]. In these 162

years, the region experienced 15 hurricanes whose eye was within 120 kilometers of the

County’s geographic center and had winds high enough to cause damage. The first storm

occurred in the Year 24, the last in Year 162, and the remainder occurred in the time frame

between. Years 43 and 105 experienced two storms. Note that using historic tracks is only one

option. Alternatively, probabilistically consistent synthetic tracks or worst-case synthetic

tracks, among others, may be overlaid on the region. A parametric wind field model [68] is

pre-run for each storm to generate each parcel’s peak 3-second sustained wind gust. A typical

peak wind gust for any given parcel in an average storm is tropical storm level (i.e., 39 to 73

mph or 17.4m/s to 32.6m/s).

Anne Arundel County’s historical hurricane experience is relatively mild compared to

other regions along the eastern US Coast. An interesting comparison is to take the region and

to comparatively assess what the impact might be over time under a more severe hurricane

experience. For example, one could hypothesize that if damage spurs mitigation, that over a

period of some time, that damage rates might be lower after severe storms in environments

that experience more powerful storms than damage rates after milder storms in environments

that experience less intense storms. To examine how hurricane intensity and frequency influ-

ence a community’s vulnerability, we consider the same community and its building stock but

subject it to 162 years of hurricane experiences from Miami, Florida. That is, we overlay histor-

ical storm tracks affecting Miami on Anne Arundel County and use the same downscaled

parametric wind field model to assess parcel-level peak wind gusts. Miami experienced 36

tropical storms or hurricanes in the 162-year record and the average storm intensities are

higher than the intensities of Anne Arundel County historical record. If damage sustained

from hurricanes spurs mitigation, then houses under the Miami case experience more oppor-

tunities to mitigate.

The damage phase uses the historical storm record together with fragility curves from the

FEMA HAZUS-MH database [16] to probabilistically assign wind damage. Damage can be

none or in one of four damage states. For a given building type, resistance level, and wind

speed, the four fragility curves—one for each damage state—provide damage state probabili-

ties. In each replication, each houses’ damage state is randomly chosen in proportion to these

probabilities.

Mitigation scenarios

The mitigation phase considers four mitigation scenarios: (1) the baseline scenario, where

damaged houses return to their initial resistance level, (2) the upgrade scenario, where an

agent’s decision to mitigate is probabilistic and is a function of the damage it sustains and its

current resistance level, (3) the neighbor scenario, which is identical to the upgrade case except

Table 2. Description of the housing types, resistance levels, and mitigation strategies for concrete houses and mobile homes.

Resistance

level

Concrete Houses Mobile Homes

(Building Types 10) (Building Type 11)

Mitigation

Strategies

Fraction in Corresponding Resistance

Level in Year 1

Mitigation

Strategies

Fraction in Corresponding Resistance

Level in Year 1

1 No mitigation 95% No mitigation 95%

2 Shutter 5% Tie downs 5%

3 N/A N/A Tie down

+ shutters

0%

https://doi.org/10.1371/journal.pone.0182719.t002
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houses that are not damaged may be upgraded if neighboring houses are damaged, and (4) the

policy case, where the “government” offers yearly mitigation incentives and some fraction of

agents take the subsidy and upgrade regardless of whether they experience a storm or damage.

The mitigation scenarios are evaluated in separate runs and sensitivity analyses are conducted

subsequently to isolate the effects of marginal changes to an individual’s mitigation likelihood.

The baseline scenario is representative of an insurance policy in which homeowners are

assumed to possess insurance and receive compensation when their house is damaged. A

house that is damaged is repaired to its original resistance level. This assumption is reasonable

in many regions of the United States for wind damage. A local insurance agent confirmed that

most homeowners in Anne Arundel County (99+%) have homeowners’ insurance and that

this pays to restore to either the previous state or to the state corresponding to current building

code if damage exceeds 60% of the value of the house [69]. This scenario forms a baseline from

which other scenarios are compared.

The upgrade scenario is representative of the fact that some homeowners whose house sus-

tains damage during a storm choose to upgrade their house’s resistance to a level greater than

it was before the storm. We implicitly assume that the agents are responsible for the costs asso-

ciated with the upgrades and costs are not modeled here. The upgrade probabilities reflect two

assumptions: (1) that less costly upgrades are more likely to be undertaken when damage is

minimal and (2) a house that sustains more damage is more likely to receive a substantial

upgrade. Ultimately, the upgrade probabilities are conditioned on each house’s damage state,

building type, and resistance level prior to damage. Table 3 shows a subset of the initial

upgrade probabilities for the four damage states for single- and two-story wood-framed homes

(building types 1 and 2) that are in resistance level 1 prior to damage. These probabilities form

a reference against which subsequent, sensitivity analyses are compared. In the sensitivity anal-

yses, the likelihood of an agent mitigating is increased by 10%, 20%, 30%, or 40% or decreased

by 10% or 20%. This demonstrates the macro-level effects from these marginal changes in

behavior. The remaining transition probabilities are shown in the S2 Appendix. In the illustra-

tive example, any agent who experiences damage either returns to its original resistance level

or mitigates because it is assumed that insurance will cover the cost of damage. In future itera-

tions of the framework that consider other hazard and decision models, agents may find it is

not cost-effective to return to the previous resistance level after damage due to lack of insur-

ance (e.g., flood insurance is less common to possess) or due to home-value depreciation.

The neighbor scenario is nearly identical to the original upgrade scenario; the difference is

that parcels near damaged houses may be upgraded as well. This rule represents a scenario

Table 3. Upgrade probabilities for one- and two-story wood-framed houses (building types 1–5) that

are in resistance level 1 prior to the storm.

Resistance level after mitigation Damage state after storm

1 2 3 4

1 60% 40% 5% 0

2 39% 50% 0 0

3 1% 10% 0 0

4 0 0 65% 40%

5 0 0 30% 55%

6 0 0 0 5%

As an example, a house in resistance level 1 prior to the storm that sustains minimal damage (damage state

1) will upgrade to resistance level 2 by adding roof straps with a 39% likelihood.

https://doi.org/10.1371/journal.pone.0182719.t003
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where an agent learns from the experience of a neighbor and takes action. Damaged houses

use the same upgrade probabilities as in the upgrade scenario. In addition, undamaged houses

that have at least some fraction of neighbors within 75 meters who experience at least moder-

ate damage (i.e., at least damage state 2) are upgraded to the next resistance level. This thresh-

old is varied from 10% to 50% to test the effects of mitigation spawned from the experience of

different homeowners. In future iterations of this model, this module could be expanded to

include a larger social network than neighbors, such as students at the same school.

The fourth scenario is the policy scenario, which represents the possible role of a govern-

ment providing incentive or subsidies that encourage mitigation. Government subsidies—

when applied effectively—can play an important and significant role in reducing community

vulnerability [24, 70]. In two separate cases of this scenario, 1% and 3% of agents are assumed

to respond to a subsidy and make upgrades to their house. Subsidies are not targeted and all

agents are eligible to receive it. Therefore, in the model, 1% or 3% of agents are randomly

selected to make an upgrade each year and they upgrade to the next resistance level. This sce-

nario is similar to the baseline scenario except for the yearly subsidy aspect; damaged houses

return to their pre-storm resistance level.

The baseline, upgrade, and policy scenario could be viewed as discrete-event simulation,

due to the fact that agents do not explicitly learn from nor interact with other agents. The

neighbor scenario is more in the spirit of a cellular automaton model, in which each parcel is a

cell. An agent’s decision to mitigate affects his or her likelihood of damage in the future, which

in turn affects the likelihood that others in close proximity (neighbors) will also mitigate. If the

social network were broadened, and agent interaction was considered more explicitly, the

model would be more in the spirit of an agent-based model.

Details about the model architecture, computing platform, and run times are provided in

the S1 Appendix. A mathematical description is provided in Appendix A. This model is run

500 times for the two hurricane environments (Anne Arundel County and Miami) and for the

four mitigation scenarios. With 500 replications, the confidence interval width for the number

of damaged houses in the four most severe storms in both environments is less than 0.02% of

the mean. Neither building type nor land use patterns change within the model. To reduce

confusion with the dates associated with historical building stocks in Anne Arundel County,

we label the first year of each simulation as Year 1 –rather than 1851 –with each simulation

continuing until Year 162.

Results

Anne Arundel County wind environment. The three most severe storms in the Anne

Arundel County historical record occurred in years 42, 149, and 162. These are the fourth,

eleventh, and thirteenth storms, respectively, to affect the County. The fourth storm was the

most severe. The regional storm intensities are fairly uniform for all these storms, with the

southern region typically experiencing a slightly more intense hazard. As an example, the peak

wind speeds for the storm in year 42 are shown in Fig 3a; the maximum wind gust is 41.1 m/s

(92 mph), which makes it a Category 1 hurricane at the time of impact for this region. This

storm is somewhat uncharacteristic for the region; the storm made landfall in South Carolina

and traveled northward through Central Maryland and had relatively minor decay. Hence,

inland regions experienced higher wind gusts than coastal regions. The average damage state

for each house in the baseline scenario is shown in Fig 3b; the damage is greater where the

wind speeds are higher, though the extent of damage is relatively mild.

Table 4 shows the average number of houses to sustain damage in the three most severe and

aforementioned storms in the Anne Arundel County wind environment under the four
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mitigation scenarios. The results using the reference probabilities (Table 3) are shown for both

the upgrade and neighbor scenario and results from sensitivity analyses are presented later.

Additionally, the results using a threshold of 10% of neighbors who experience damage are

shown for the neighbor case. This table is paired with Fig 4 to show the distribution of damage

reduction over the baseline scenario for the same three storms. A positive value means a

reduction.

In the baseline scenario, 57,460 houses (or 35% of houses) are expected to experience some

damage in the fourth storm and of these damaged houses, 871 (1.5% of damaged houses) are

expected to result in total devastation. Far fewer houses are damaged in later storms in this sce-

nario due to the less severe nature of these storms.

Damage drives mitigation in the upgrade and neighbor scenarios. Only 600 houses on aver-

age experience hurricane damage prior to the fourth storm (results not shown), and most of

that damage is mild. Hence, opportunities to mitigate prior to the fourth storm are minimal

and the reduction in damage over the baseline scenario is negligible for these scenarios.

Most houses (98.5%) that are damaged in the fourth storm experience mild to moderate

damage (i.e., damage states 1 and 2) and the remainder experience severe damage. In the

Fig 3. a) Peak wind speed (m/s) for the fourth storm to impact Anne Arundel County, (b) Spatial distribution of damage states,

averaged over 500 replications, after the fourth storm for the baseline scenario. ( The other scenarios are visually similar. Most

houses experience no damage or minimal damage. The fourth storm is the region’s most intense storm in its 162-year historical hurricane

record.

https://doi.org/10.1371/journal.pone.0182719.g003
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upgrade and neighbor scenarios, the agents whose houses are severely damaged are more likely

to make significant upgrades when they rebuild, though they represent a small fraction of the

agents who experience damage and then upgrade in this storm. Most agents that do mitigate

make small upgrades—often by adding straps to connect the roof deck to the rest of the house.

While this upgrade is inexpensive and often recommended, its benefits are realized only in

high winds—speeds that the region does not witness again in the timeframe in the study.

Straps reduce the likelihood of extreme damage, not mild damage. Hence, the number of

houses that are damaged and number of houses in each damage state, in the 11th and 13th

storms, are nearly identical in the baseline, upgrade, and neighbor scenarios and the reduction

over baseline is minimal.

The policy cases in this wind environment are more effective at preventing damage simply

due to more mitigation opportunities. In the 3% policy scenario, by the fourth storm, 36% of

houses (on average) mitigate once, 23% twice, and 10% three times. Replacing toenails with

straps is effective at reducing the likelihood of severe damage and the reduced number of

houses in damage state 4 reflects this. In fact, there is a 70% reduction of houses in damage

state 4 over the baseline scenario in the 3% policy scenario. However, the total reduction in

damage is only 3%. This reflects the fact that most of the upgrades chosen thus far only reduce

the likelihood of severe damage.

Storms after the fourth also result in less damage under the policy scenarios compared to

the other scenarios. For example, after the 13th storm, the 1% policy scenario results in a 7%

reduction in overall damage and the 3% scenario results in a 53% reduction over baseline.

Unlike before, the primary damage reduction is for houses in damage state 1 and not in dam-

age state 4; the wind speeds in the 13th storm are not high enough to produce severe damage

even in the baseline scenario. Hence, it is not the replacement of toenails with straps that drive

Table 4. The average number of houses, averaged over 500 simulations, that sustain damage in the three most severe storms, for the Anne Arun-

del County hurricane environment, for the baseline, upgrade, neighbor, and policy scenarios.

Case Damage State

All 1 2 3 4

Baseline

Storm 4, Yr 43 57,460 46,014 10,299 276 871

Storm 11, Yr 149 1,490 1,451 39 0 0

Storm 13, Yr 162 1,303 1,271 31 0 1

Upgrade (Reference)

Storm 4, Yr 43 57,440 45,984 10,315 276 865

Storm 11, Yr 149 1,478 1,440 38 0 0

Storm 13, Yr 162 1,298 1,270 28 0 0

Neighbor (10%)

Storm 4, Yr 43 57,436 46,018 10,284 277 857

Storm 11, Yr 149 1,480 1,443 37 0 0

Storm 13, Yr 162 1,287 1,258 29 0 0

Policy 1%

Storm 4, Yr 43 57,148 46,102 10,148 321 577

Storm 11, Yr 149 1,382 1,358 24 0 0

Storm 13, Yr 162 1,185 1,167 18 0 0

Policy 3%

Storm 4, Yr 43 55,586 45,939 9,073 315 259

Storm 11, Yr 149 714 712 2 0 0

Storm 13, Yr 162 606 605 1 0 0

https://doi.org/10.1371/journal.pone.0182719.t004
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this reduction in damage because straps do not prevent mild damage. 162 years pass between

the start and the 13th storm. In the 1% policy scenario 48% of houses have upgraded at least

twice, and 22% at least three times. In the 3% policy scenario, all houses are at their highest

resistance level. (This is achieved in approximately 155 years.) Houses in higher resistance lev-

els are more likely to stave off mild damage. Therefore, if a regional objective is to reduce the

likelihood of major and minor losses, policymakers should encourage mitigation regardless of

the storm experience in that year.

Sensitivity analyses are conducted for the upgrade scenario (Fig 5). Here, we show how

agents are more or less likely to mitigate when they experience damage. We ran the model 500

times for each parameter in the range -20% and 40%, in 10% increments. Because the fourth

storm is the only storm to produce substantial damage and the bulk of the mitigation that fol-

lows does little to reduce mild damage in future storms, the reduction in damage over baseline

is negligible for all storms.

Fig 6 shows the spatial distribution of mitigation for the upgrade (standard and 40% over

standard) and 1% policy scenarios. Most agents are less than 50% likely to upgrade one resis-

tance level in the standard upgrade scenario (Map 6b). On the other hand, agents are generally

between 50% and 100% likely to upgrade by one resistance level in the upgrade scenario that is

40% greater upgrade likelihood than the standard (Map 6c). This upgrade is typically the addi-

tion of roof straps. While widespread minimal increase in resistance level does little to thwart

mild damage, it offers substantial protection should another strong storm impact the region.

In the 1% policy case (Map 6d), most agents increase the resistance level of their house

between one and two levels.

Fig 4. Percent reduction in damage over baseline scenario for the upgrade, and policy scenarios for the three most intense

storms in Anne Arundel County’s historical storm record. The region’s most intense storm is its fourth.

https://doi.org/10.1371/journal.pone.0182719.g004
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Fig 5. Sensitivity analysis for the upgrade scenario as measured by percent reduction in damage over baseline scenario for the

Anne Arundel County’s historical storm record. The transition probabilities are presented in the S2 Appendix and are conditioned on the

damage level experienced. The most intense storm is the fourth storm to impact the region.

https://doi.org/10.1371/journal.pone.0182719.g005

Fig 6. Number of upgrades over 162 years, averaged over 500 replications. (a) Baseline scenario, (b) upgrade scenario (standard

case), (c) upgrade scenario (40% greater likelihood of upgrade than the standard case), and (d) 1% policy scenario, for the Anne Arundel

County wind environment. All houses make the maximum number of upgrades allowed in the 3% policy scenario. Wood-framed houses may

have up to four upgrades, and unreinforced masonry houses may have up to five upgrades. Note how the scale changes after 1.25

upgrades.

https://doi.org/10.1371/journal.pone.0182719.g006
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In the neighbor scenario, the upgrade decision rule is as follows: If at least x% of an undam-

aged house’s neighbors experience moderate or worse damage during a storm, the undamaged

house will upgrade one resistance level. Here, we used several values for x between 10% and

50%. The results are approximately the same, regardless of the value used for x and there is no

reduction in damage over the upgrade case. (For brevity, the results are not plotted.) This is

not surprising given relatively mild wind environment. Only (approximately) 10,300 houses

ever experience damage state 2. Of these, the damage is typically tightly concentrated, meaning

that houses that are damaged are clustered and only a few houses exist within the cluster with-

out any damage.

Of the cases considered, the policy cases in the Anne Arundel County wind environment

results in the most reduction in damage and the highest number of upgrades. This is simply

due to the hurricane environment not being severe enough to drive mitigation via damage—

even when mitigation is probabilistically very likely given any damage. However, it is not

intended to imply the policy scenario is cost effective. On the contrary, the policy scenario is a

very expensive way to reduce damage in this environment.

The discussion to this point has addressed how small, isolated changes to decision-making

following damage could affect regional vulnerability. Another relevant question is, given a par-

ticular behavioral response or policy initiative, over what timescale might they be impactful.

Returning momentarily to Fig 4, we see that even over very long time scales (i.e., 150 years),

the 1% policy scenario is not expected to produce meaningful changes. The 3% policy scenario

could produce meaningful changes over very long time scales; however, over time scales more

relevant for policy making (i.e., 20–50 years), it is not likely to significantly reduce damage.

Miami wind environment. The Miami wind environment is more severe than the Anne

Arundel County wind environment both in terms of average wind speed and the number of

hurricanes impacting the region. The Miami wind environment is superimposed on Anne

Arundel County to test the hypothesis that damage-driven mitigation can be an effective at

reducing regional vulnerability and, if true, to what extent. Thirty-six storms affect the region

in the 162-year record under consideration. In six storms, at least half of houses experience

Category 1 wind speeds, in five storms, at least half of houses experience Category 2 wind

speeds, and in four storms, at least half of houses experience Category 3 wind speeds. Table 5

shows the years in which these storms occur.

Fig 7 shows the percent reduction in the total number of houses damaged over the baseline

scenario for the upgrade, neighbor, and policy scenarios. The figure is divided into three parts:

Category 1, Category 2, and Category 3 storms. Fig 8 accompanies Fig 7 and shows the percent

reduction in damage states 1 and 4 for the same set of storms. By dividing the figures this way,

we see how the expectation of mild and severe damage may change over time.

The fourth storm (in year 20) is the first Category 2 storm to impact the region. This storm

damaged more than 80,000 houses, on average, in all scenarios except the 3% policy scenario.

Of those houses to experience damage, approximately 30% experience severe damage (i.e.,

damage state 4). Fewer than 1,000 houses experience damage prior to this storm, so prior

opportunities to mitigate are few in the upgrade and neighbor scenarios. In the 1% policy sce-

nario, 82% of agents have yet to be selected to mitigate by year 20, so similarly few opportuni-

ties have arisen. Therefore, it is not surprising that these scenarios offer little reduction over

baseline damage. The 3% policy scenario stands out. By year 20, 46% of agents have been

selected to mitigate at least once and most of these improvements are to the roof (e.g., install-

ing roof straps). While these improvements do little to protect the house from mild damage,

they are effective at reducing the likelihood of severe damage from high winds—an important

property in a wind environment like Miami. As such, the number of houses in damage state 4

decreases by almost 50% in the 3% policy scenario (Fig 8). Mostly, these are houses that
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Table 5. The historical hurricane record for the Miami wind environment for storms that affect more than half of houses with Category 1–3 winds.

Category 1 Category 2 Category 3

Storm Number Year Storm Number Year Storm Number Year

13 56 4 20 9 41

21 86 14 59 17 76

25 98 23 95 24 97

29 114 26 100 34 148

35 149 27 102 - -

36 115 - - - -

Thirty-six storms affect the region with 15 of them being Category 1 or higher. The storm number is the nth storm to affect the region.

https://doi.org/10.1371/journal.pone.0182719.t005

Fig 7. Percent reduction in total damage over baseline scenario for the upgrade, neighbor, and policy scenarios for Category 1, 2,

and 3 storms.

https://doi.org/10.1371/journal.pone.0182719.g007
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otherwise would have been in damage state 4 but are now in damage states 2 or 3. This is sig-

nificant because the structure of the house is mostly salvageable, hence reducing rebuilding

costs. It is worth noting that the number of houses in damage state 3 increases 30% over base-

line in the 3% policy scenario (not shown). This type of information—the distribution of the

severity of damage—is helpful for city and regional planners. It informs them of the extent of

regional damage after storms of varying intensity and how it could change over time.

By the first Category 1 storm—the 13th storm to impact the region—at least 80% of houses

have been damaged at least once (at any damage level) in the baseline and upgrade scenarios.

Of those houses, 18% experience total loss. This offers agents opportunities to mitigate in the

damage-driven mitigation scenarios and those that experience total devastation previously are

more likely to make significant improvements. As a result of mitigation in earlier storms, the

reduction in the number of houses in damage state 4 in the upgrade scenarios is noteworthy.

The standard upgrade scenario reduces severe damage by nearly 70% and the more aggressive

upgrade scenarios reduce severe damage by nearly 100% (Fig 8). In fact, by this storm the

upgrade scenarios easily outpace the damage reduction offered by the 1% policy scenario.

The total reduction in damage continues to rise with each successive Category 1 storm (Fig

7). By the second Category 1 storm (the 21st storm, which is the 6th substantial storm), no

house is expected to be severely damaged under the upgrade and policy scenarios. Further, the

number of houses to experience mild damage is expected to decline (Fig 8). The level of dam-

age reduction is heavily dependent on the likelihood of mitigation post-damage. Fig 9 shows a

sensitivity analysis for the reduction in damage over baseline for different likelihoods of

upgrading. The response is non-linear for Category 1 storms. For example, the largest mar-

ginal improvement is offered by the 10% increase over the standard case whereas the cases to

Fig 8. Percent reduction (or increase) in the number of houses in damage states 1 and 4 over baseline scenario for the upgrade,

neighbor, and policy scenarios for Category 1, 2, and 3 storms. The dark gray numbers are the storm numbers. The year in which the

storm occurred is found in Table 5.

https://doi.org/10.1371/journal.pone.0182719.g008
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offer the least marginal improvement are the 10% decrease and 40% increase over the standard

case.

Interesting to note, the reduction in total damage in the 35th storm is less than the reduction

in total damage in the 29th storm in the upgrade and policy scenarios. The 35th storm was a

large storm and affected more houses than most other Category 1 storms. Of the additional

houses that were affected, many had not experienced damage in prior Category 1 storms—and

only in Category 2 and 3 storms—so they had fewer opportunities to upgrade.

In contrast to Category 1 storms, the reduction in total damage in Category 2 and 3 storms

is less. A couple of factors are at work here. First, many agents who experience damage in Cate-

gory 2 and 3 storms do not experience damage in Category 1 and milder storms, in part

because they live in less hazardous regions. Therefore, the number of opportunities they have

to mitigate is fewer in damage-driven scenarios. The upgrades they do make, however, are

more likely to reduce the risk of severe damage than mild damage. This is reflected the reduc-

tion of houses in damage state 4 and the increase of houses in damage state 1 in successive

Fig 9. Sensitivity analysis for percent reduction in total damage (i.e., all damage states) over baseline scenario for the upgrade

scenarios for Category 1, 2, and 3 storms.

https://doi.org/10.1371/journal.pone.0182719.g009
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storms (Fig 8). However, the second and possibly more relevant reason for why Category 2

and 3 storms see minimal reduction in damage over the baseline scenario is because the winds

are simply stronger, making any upgrades probabilistically less effective.

Another finding shown in Fig 7 is the relatively large variability in the reduction of damage

over baseline for the 1% policy scenario in Category 1. In the upgrade scenario, the upgrades

tend to occur in localized regions where storms are most likely to cause damage. In the policy

scenarios, on the other hand, the upgrades are random, leading to greater variability in hous-

ing protection. This variability tends to decrease over time simply because there is a greater

proportion of houses being upgraded. This variability is not apparent for Category 2 and 3

storms, because of the reduced effectiveness of upgrades, as noted above.

A neighbor scenario was also run for the Miami hurricane environment. The results, which

are not shown, do not show an improvement over the upgrade scenarios. Similar to the Anne

Arundel County hurricane environment, damage is often clustered and only a few houses

without any damage exist within a cluster. Hence, if damage to neighboring houses spurs miti-

gation, it will likely only be relevant in areas where there is pronounced variability in damage.

Comparison of Anne Arundel County with Miami hurricane environments. The

storms of the Miami hurricane environment are more frequent and intense than those of the

Anne Arundel County hurricane environment. This allows us to compare how the environ-

ment can affect the outcomes over time under different scenarios and the effectiveness of dif-

ferent policy scenarios in particular. In the Anne Arundel County case, the 1% policy scenario

is ineffective at reducing damage, in part because there is minimal damage to be had. In fact,

the 1% policy scenario performs on par with even the most aggressive damage-driven upgrade

scenarios, despite the fact that on average there is more than double the number of upgrades

(Fig 6). This suggests that the expense of this degree of upgrades does not provide a compara-

ble benefit. In contrast, the 1% policy in the Miami environment is ineffective at reducing

damage compared to the other scenarios for a different reason; specifically because it provides

too few opportunities to mitigate. Even in an upgrade scenario where the probability of

upgrade given damage is relatively low (e.g., the 20% decrease over standard case), the number

of upgrades that are made are more simply because there are more damage-causing storms.

The 3% policy scenario is effective at reducing damage in later storms in the Anne Arundel

County case (Fig 4), but the type of damage that is reduced is mild. In this scenario, every

house makes all possible upgrades, and the benefit for this massive improvement is the reduc-

tion of a few hundred broken windows. In contrast, the 3% policy scenario in the Miami hurri-

cane environment is effective at reducing both total damage in Category I storms and severe

damage in all storms. In fact, it outpaces the reduction in severe damage in storms 4 and 9 (Fig

8) compared to the upgrade scenarios, simply because there were fewer historical opportuni-

ties to mitigate in the damage driven scenarios. Hence, in regions with frequent and intense

hurricanes, it could be effective to proactively encourage mitigation.

Conclusions

In this work, we develop a simulation model to quantify the marginal effects of various behav-

ioral scenarios and hazard environments on community vulnerability over time. This frame-

work could allow regional planners and policy makers to identify potential policy solutions

that are qualitatively robust against the deep uncertainty inherent with this problem. Through

an illustrative example, we demonstrate how community vulnerability could evolve over time

in Anne Arundel County given a range of decision rules. Using the behavioral rules that we

test, we find that if the goal is to reduce the expected overall damage after a hurricane, blanket

subsidies are usually more effective compared to damage-driven mitigation when the return
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period between hurricanes is long. We expect this, though, to come at great expense. However,

when most agents upgrade by one level, they greatly reduce their potential for catastrophic

losses in intense storms. Hence, there may be tremendous benefit for encouraging some mini-

mal level of improvement early—because in reality, the year of arrival of the next severe storm

is unknown. For environments that experience frequent and intense storms, we find that dam-

age-driven mitigation can be as effective as blanket subsidies and that blanket subsidies exceed

damage-driven mitigation only at fairly high rates of subsidy uptake. We also find a significant

redistribution of damage states from state 4 towards state 1, indicating the effectiveness of the

mitigation strategies. We remind the reader these results are derived from an illustrative exam-

ple, and by no means do we consider the results to be robust enough to suggest changes to

regional policy. A more comprehensive study that includes a wider range of behaviors would

be required for that.

Many refinements could be added to this framework to that would enhance the insights

from model runs. First, sophisticated learning and behavioral models for agents should be con-

sidered. How agents make decisions is complex and may depend on social norms, the per-

ceived value and effectiveness of the upgrade, risk aversion, and cognitive biases.

Improvement in behavioral modeling could help to answer questions like “how might infor-

mation campaigns benefit a community?” or “in regions with tight social cohesion, how might

social norms affect vulnerability?” Second, land use change should be considered [71]. This is

especially important for quantifying how spatial-wealth disparities may compound over time

due to repeated hazards. Third, hazards and large-scale community protection measures (e.g.,

levees, sea-walls) may be an important component to the framework. For example, levees may

encourage people to remain in or move to more hazardous areas than they would otherwise,

increasing the regional vulnerability in extreme events (e.g., [72]). Fourth, the role of insurance

in our framework is not explicitly considered and ought to be. For more information on this

class of work, we point the reader to Peng et al. [24], Carson et al. [73] and Kleindorfer and

Kunreuther [74]. We acknowledge that insurance-homeowner interactions are important and

the framework proposed in this paper could be expanded to consider them in future iterations.

Appendix A. Mathematical description of illustrative example

We can describe the algorithm as a fully observable Markov decision processes. Following

standard notation, we let

sit = the state of house i after storm t

ait = action by the homeowner of house i after storm t

πk(a|s) = probability of action a given state s under policy k

Pr(s´|s,a,t´) = transition probability of state s´ after storm t´ given the state s and action a

immediately prior to this storm

For readability, we suppress subscripts in most of our description and use the standard

prime superscript to denote the next time step, e.g., s denotes sit, s´ denotes si,t+1 and t´ denotes

t+1. In the main text, we consider only one major storm per year, but for the discussion of the

mathematics below, it is not necessary to use this restriction.

Using this notation, we can now describe the mathematics of the illustrative example. We

begin by describing the above constructs in more detail.

The state is given by a 5-tuple:

s = (r,d,x,y,h) in which

r = resistance level

d = damage level

x,y = location specified by longitude and latitude (fixed)
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h = house type, e.g., two-story wood-framed house (fixed)

The fact that the location (x,y) is fixed implies that homeowners do not move, and the fact

that h is fixed implies that houses are not entirely rebuilt, e.g., from a one-story to a two-story

wood-framed house.

It is necessary to consider an intermediate state of the houses after homeowners repair and

possibly upgrade their homes and prior to the next storm. We use the superscript 0 for this

intermediate state. Hence, s is the state immediately after storm t, s0 is the state after repair/

upgrade, and s´ is the state after the next storm.

The action a produces two changes: the damage level d is reset to 0, meaning that the home-

owner always repairs any damage, and the resistance level is set to a level greater or equal to its

prior level:

a = (d0,r0) in which d0 = 0 and r0 > = r.

The action is stochastic, depending on the policy k. We describe the policies in more detail

below, where we only show the probabilities for resistance level r0 since d0 = 0 with probability

1:

πbaseline(a|s) corresponds to Pr(r0 = r) = 1

πupgrade(a|s) = Pr(r0|h,d) as specified in Table 3 in the main text and in the S2 Appendix.

πneighbor(a|s) depends on the damage state d:

πneighbor(a|s) = πupgrade(a|s) if d> 0, otherwise

πneighbor(a|s) corresponds to Pr(r0 = r+1) = p({djt}, j 2 neighborhood of house i) as specified

in Table S2:24 and Pr(r0 = r) = 1 − Pr(r0 = r+1)

πpolicy p(a|s) also depends on damage state d:

πpolicy p(a|s) = πupgrade(a|s) if d> 0, otherwise

πpolicy p(a|s) corresponds to Pr(r0 = r+1) = p, Pr(r0 = r) = 1 − p

The storm t encompasses the entire region under study, and using the techniques describe

in the methodology section of the main text, the properties of this storm are downscaled to the

spatial scale of the parcels so that we obtain intensities:

Iit = intensity of the hazard of storm t on house i

We use these intensities to describe the stochastic effects of storm t on the intermediate

state s0:

Pr(d´|I,h,r0) = fragility curve giving the probability of damage state d´ for house h with

resistance level r0 subjected to storm intensity I.

Given the above, the transition probability can be expressed as the following sum of the

product of the fragility curve and the policy:

Prðs0js; a; t0Þ ¼
X

r0�r

Prðd0jI; h; r0
ÞPrðr0jsÞ ¼

X

r0�r

Prðd0jI; h; r0
Þpkðd

0
; r0jsÞ

It is noted that the resistance ri,t+1 is assigned to be equal to rit
0. This is necessary to main-

tain consistency in our Markov state description. It is not the true resistance of house i after

storm t+1, but it is used as the reference resistance in the stochastic action ai,t+1 after storm t

+1. For example, if house i is damaged by storm t+1, then under the upgrade policy,

r0

i;tþ1
¼ ri;tþ1 ¼ r0

it;

i.e., the resistance is set to be equal to the resistance after any repairs/upgrades performed after

storm t. Also, as noted earlier in the definition of the policy, d0 = 1 with probability 1.

For all policies except for the neighbor policy, the transition probabilities above decoupled

and can be evaluated for each house separately. For the neighbor policy, it is necessary to

include the states of the neighboring houses. To make this last statement clearer, we use the
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subscript notation below:

Prðsi;tþ1jst; ait; tþ 1Þ ¼
X

r0
it�rit

Prðdi;tþ1jIit; hi; r
0

itÞpneighborhoodðd
0

it; r
0

itjstÞ

in which st is the state of all houses immediately after storm t.

If the storm intensity is also stochastic, then we would need one more summation over the

range of possible intensities, multiplied by the probabilities of these intensities:

Prðs0js; a; t0Þ ¼
X

I

X

r0�r

Prðd0jI;h; r0Þpkðd
0;r0jsÞ PrðIjx; y; t0Þ
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31. Santé I, Garcı́a AM, Miranda D, Crecente R. Cellular automata models for the simulation of real-world

urban processes: A review and analysis. Landscape Urban Plan. 2010; 96(2):108–22. https://doi.org/

10.1016/j.landurbplan.2010.03.001

32. Malamud BD, Turcotte DL. Cellular-Automata Models Applied to Natural Hazards. Comput Sci Eng.

2000; 2(3):42–51. https://doi.org/10.1109/5992.841795

33. Herault A, Vicari A, Ciraudo A, Del Negro C. Forecasting lava flow hazards during the 2006 Etna erup-

tion: Using the MAGFLOW cellular automata model. Comput Geosci. 2009; 35(5):1050–1060. https://

doi.org/10.1016/j.cageo.2007.10.008

34. Barredo JI, Engelen G. Land use scenario modeling for flood risk mitigation. Sustainability. 2010; 2

(5):1327–1344. https://doi.org/10.3390/su2051327

35. Logan TM, Bricker JD, Guikema SD. Hard-defenses fail to improve urban resilience in the face of natu-

ral disasters. 2017; [under review].

36. Zechman E. Agent-based modeling to simulate contamination events and evaluate threat management

strategies in water distribution systems. Risk Anal. 2011; 31(5):758–772. https://doi.org/10.1111/j.

1539-6924.2010.01564.x PMID: 21231948

37. Zechman Berglund E. Using Agent-Based Modeling for Water Resources Planning and Management. J

Water Res Pl ASCE. 2015; 141(11):1–17. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000544

38. Lux T, Marchesi M. Volatility clustering in financial markets: a microsimulation of interacting agents. Int

J Theoretical Appl Finance. 2000; 3(4):675–702. https://doi.org/10.1142/S0219024900000826

39. Samanidou E, Zschischang E, Stauffer D, Lux T. Agent-based models of financial markets. Rep Prog

Phys. 2007; 70(3):409–450. https://doi.org/10.1088/0034-4885/70/3/R03

40. Magliocca NR, Brown DG, Ellis EC. Cross-site comparison of land-use decision-making and its conse-

quences across land systems with a generalized agent-based model. PLoS One. 2014; 9(1):e86179.

https://doi.org/10.1371/journal.pone.0086179 PMID: 24489696

41. Matthews RB, Gilbert NG, Roach A, Polhill JG, Gotts NM. Agent-based land-use models: a review of

applications. Landsc Ecol. 2007; 22(10):1447–1459. https://doi.org/10.1007/s10980-007-9135-1

42. Valbuena D, Verburg PH, Bregt AK, Ligtenberg A. An agent-based approach to model land-use change

at a regional scale. Landsc Ecol. 2010; 25(2):185–199. https://doi.org/10.1007/s10980-009-9380-6

43. Chen X, Meaker JW, Zhan FB. Agent-based modeling and analysis of hurricane evacuation procedures

for the Florida Keys. Nat Hazards. 2006; 38(3):321–338. https://doi.org/10.1007/s11069-005-0263-0

44. Chen X, Zhan FB (2008) Agent-based modelling and simulation of urban evacuation: Relative effective-

ness of simultaneous and staged evacuation strategies. J Oper Res Soc, 59(1), 25–33. https://doi.org/

10.1057/palgrave.jors.2602321

45. Legg M, Davidson RA, Nozick LK. Optimization-Based regional hurricane mitigation planning. J Infra-

struct Syst. 2013; 19(1):1–11. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000106

46. Staid A, Guikema SD, Nateghi R, Quiring SM, Gao MZ. (2014). Simulation of tropical cyclone impacts

to the US power system under climate change scenarios. Clim Chang. 2014; 127(3–4):535–546.

https://doi.org/10.1007/s10584-014-1272-3

47. Reilly AC, Tonn G, Zhai C, Guikema SD. Hurricanes and Power System Reliability—The effects of indi-

vidual decisions and system-level hardening. Proc IEEE. 2017; 105(7):1429–1442. https://doi.org/10.

1109/JPROC.2017.2689720

48. Vickery P, Lin J, Skerlj P, Twisdale L, Huang K. HAZUS-MH Hurricane model methodology II: Damage

and loss estimation. Nat Hazards Rev. 2006; 7(2):94–103. https://doi.org/10.1061/(ASCE)1527-6988

(2006)7:2(94)

49. Scheitlin KN, Elsner JB, Lewers SW, Malmstadt JC, Jagger TH. Risk assessment of hurricane winds for

Eglin air force base in northwestern Florida, USA. Theor Appl Climatol. 2011; 105(3):287–296. https://

doi.org/10.1007/s00704-010-0386-4

Evolution of vulnerability of communities facing repeated hazards

PLOS ONE | https://doi.org/10.1371/journal.pone.0182719 September 27, 2017 28 / 29

https://doi.org/10.1111/risa.12227
https://doi.org/10.1111/risa.12227
http://www.ncbi.nlm.nih.gov/pubmed/24916562
https://doi.org/10.1177/0739456X03258635
https://doi.org/10.1111/area.12012
https://doi.org/10.1016/j.landurbplan.2010.03.001
https://doi.org/10.1016/j.landurbplan.2010.03.001
https://doi.org/10.1109/5992.841795
https://doi.org/10.1016/j.cageo.2007.10.008
https://doi.org/10.1016/j.cageo.2007.10.008
https://doi.org/10.3390/su2051327
https://doi.org/10.1111/j.1539-6924.2010.01564.x
https://doi.org/10.1111/j.1539-6924.2010.01564.x
http://www.ncbi.nlm.nih.gov/pubmed/21231948
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000544
https://doi.org/10.1142/S0219024900000826
https://doi.org/10.1088/0034-4885/70/3/R03
https://doi.org/10.1371/journal.pone.0086179
http://www.ncbi.nlm.nih.gov/pubmed/24489696
https://doi.org/10.1007/s10980-007-9135-1
https://doi.org/10.1007/s10980-009-9380-6
https://doi.org/10.1007/s11069-005-0263-0
https://doi.org/10.1057/palgrave.jors.2602321
https://doi.org/10.1057/palgrave.jors.2602321
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000106
https://doi.org/10.1007/s10584-014-1272-3
https://doi.org/10.1109/JPROC.2017.2689720
https://doi.org/10.1109/JPROC.2017.2689720
https://doi.org/10.1061/(ASCE)1527-6988(2006)7:2(94)
https://doi.org/10.1061/(ASCE)1527-6988(2006)7:2(94)
https://doi.org/10.1007/s00704-010-0386-4
https://doi.org/10.1007/s00704-010-0386-4
https://doi.org/10.1371/journal.pone.0182719


50. Gencturk BE, Elnashai AS, Song J. Fragility relationships for populations of buildings based in inelastic

response. Champaign, IL: University of Illinois at Urbana-Champaign; 2007.

51. Ryu H, Luco N, Baker JW, Karaca E. Converting HAZUS capacity curves to seismic hazard compatible

building fragility functions: effect of hysteretic models. In: The Proceedings of the 14th World Confer-

ence on Earthquake Engineering; 2008 Oct 12–17; Beijing, China. p 12–17.

52. Jacobs RA, Kruschke JK. Bayesian learning theory applied to human cognition. Wiley Interdiscip Rev

Cogn Sci. 2011; 2(1):8–21. https://doi.org/10.1002/wcs.80 PMID: 26301909

53. Reilly A, Zhai C, Guikema S. Strengths and limitations of Bayesian learning processes in agent-based

models. In: Proceedings of the 27th European Safety and Reliability Conference (ESREL); 2017 June

18–22; Portorož, Slovenia. CRC Press; 2018.

54. Evans TP, Kelley H. Multi-scale analysis of a household level agent-based model of landcover change.

J Environ Manage. 2004; 72(1):57–72. https://doi.org/10.1016/j.jenvman.2004.02.008 PMID:

15246574

55. Dillon RL, Tinsley CH, Cronin M. Why Near-Miss Events Can Decrease an Individual’s Protective

Response to Hurricanes. Risk Anal. 2011; 31(3):440–9. https://doi.org/10.1111/j.1539-6924.2010.

01506.x PMID: 20880221

56. Rubinstein A. Modeling bounded rationality. Cambridge, MA: MIT press; 1998.

57. An L. Modeling human decisions in coupled human and natural systems: Review of agent-based mod-

els. Ecol. Model. 2012; 229:25–36. https://doi.org/10.1016/j.ecolmodel.2011.07.010

58. Bonabeau E. Agent-based modeling: Methods and techniques for simulating human systems. Proc Natl

Acad Sci USA. 2002; 99(suppl 3):7280–7287. https://doi.org/10.1073/pnas.082080899 PMID:

12011407

59. Reilly A, Garzon Hervas J, Ferreira C, Guikema SD. Quantification of evolving regional vulnerability to

hurricanes. In: Walls L, Revie M, Bedford T, Editors. Proceedings of the 26th European Safety and Reli-

ability Conference (ESREL): Risk, Reliability and Safety: Innovating Theory and Practice; 2016 Septem-

ber 25–29; Glasgow, Scotland. CRC Press; 2017. p. 245–252.

60. Irwin EG, Geoghegan J. Theory, data, methods: Developing spatially explicit economic models of land

use change. Agric Ecosyst Environ. 2001; 85(1):7–24. https://doi.org/10.1016/S0167-8809(01)00200-6

61. Tonn G, Guikema SD. An agent-based model of evolving community flood risk. 2017; [under review].

62. Poussin JK, Botzen WW, Aerts JC. Factors of influence on flood damage mitigation behaviour by

households. Environ Sci Policy. 2014; 40:69–77.

63. Rathfon D, Davidson RA, Bevington J, Vicini A, Hill A. Quantitative assessment of post-disaster housing

recovery: A case study of Punta Gorda, Florida, after Hurricane Charley. Disasters. 2013; 37(2):333–

355. https://doi.org/10.1111/j.1467-7717.2012.01305.x PMID: 23278508

64. Peacock WG, Brody SD, Highfield W. Hurricane risk perceptions among Florida’s single family home-

owners. Landsc Urban Plan. 2005; 73(2–3):120–135. https://doi.org/10.1016/j.landurbplan.2004.11.

004

65. 2010 TIGER/Line Shapefiles: Maryland counties (and equivalent) [Internet]. Washington, DC: US Cen-

sus Bureau, Geography Division; 2010 [cited 2015 Dec 31]. https://www.census.gov/geo/maps-data/

data/tiger-line.html

66. Maryland Department of Planning [Internet]. Maryland; 2015 [cited 2015 Dec 31]. http://planning.

maryland.gov/OurProducts/downloadFiles.shtml

67. Historical Hurricane Tracks [Internet]. Washington, DC: National Oceanic and Atmospheric Adminis-

tration; 2016 [cited 2016 Jul 6]. https://coast.noaa.gov/hurricanes/

68. Holland GJ, Belanger JI, Fritz A. A revised model for radial profiles of hurricane winds. Mon Weather

Rev. 2010; 138(12):4393–4401. https://doi.org/10.1175/2010MWR3317.1

69. Insurance representative from a regional insurance company, private communication, May 2015.

70. Fujimi T, Tatano H. Promoting seismic retrofit implementation through "nudge": Using warranty as a

driver. Risk Anal. 2013; 33(10):1858–1883. https://doi.org/10.1111/risa.12086 PMID: 23763453

71. Burby RJ. Hurricane Katrina and the paradoxes of government disaster policy: Bringing about wise gov-

ernmental decisions for hazardous areas. Ann Am Acad Pol Soc Sci. 2006; 604(1):171–191. https://

doi.org/10.1177/0002716205284676

72. Ludy J, Kondolf GM. Flood risk perception in lands “protected” by 100-year levees. Nat Hazards. 2012;

61(2), 829–842. https://doi.org/10.1007/s11069-011-0072-6

73. Carson JM, McCullough KA, Pooser DM. Deciding whether to invest in mitigation measures: Evidence

from Florida. J Risk Insur. 2012; 80(2):309–327. https://doi.org/10.1111/j.1539-6975.2012.01484.x

74. Kleindorfer PR, Kunreuther H. The complementary roles of mitigation and insurance in managing cata-

strophic risks. Risk Anal. 1999; 19(4):727–738.

Evolution of vulnerability of communities facing repeated hazards

PLOS ONE | https://doi.org/10.1371/journal.pone.0182719 September 27, 2017 29 / 29

https://doi.org/10.1002/wcs.80
http://www.ncbi.nlm.nih.gov/pubmed/26301909
https://doi.org/10.1016/j.jenvman.2004.02.008
http://www.ncbi.nlm.nih.gov/pubmed/15246574
https://doi.org/10.1111/j.1539-6924.2010.01506.x
https://doi.org/10.1111/j.1539-6924.2010.01506.x
http://www.ncbi.nlm.nih.gov/pubmed/20880221
https://doi.org/10.1016/j.ecolmodel.2011.07.010
https://doi.org/10.1073/pnas.082080899
http://www.ncbi.nlm.nih.gov/pubmed/12011407
https://doi.org/10.1016/S0167-8809(01)00200-6
https://doi.org/10.1111/j.1467-7717.2012.01305.x
http://www.ncbi.nlm.nih.gov/pubmed/23278508
https://doi.org/10.1016/j.landurbplan.2004.11.004
https://doi.org/10.1016/j.landurbplan.2004.11.004
https://www.census.gov/geo/maps-data/data/tiger-line.html
https://www.census.gov/geo/maps-data/data/tiger-line.html
http://planning.maryland.gov/OurProducts/downloadFiles.shtml
http://planning.maryland.gov/OurProducts/downloadFiles.shtml
https://coast.noaa.gov/hurricanes/
https://doi.org/10.1175/2010MWR3317.1
https://doi.org/10.1111/risa.12086
http://www.ncbi.nlm.nih.gov/pubmed/23763453
https://doi.org/10.1177/0002716205284676
https://doi.org/10.1177/0002716205284676
https://doi.org/10.1007/s11069-011-0072-6
https://doi.org/10.1111/j.1539-6975.2012.01484.x
https://doi.org/10.1371/journal.pone.0182719


© 2017 Reilly et al. This is an open access article distributed under the terms of
the Creative Commons Attribution License:

http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits
unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited. Notwithstanding the ProQuest Terms
and Conditions, you may use this content in accordance with the terms of the

License.


