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Abstract: The safety of building occupants during and immediately after disasters, such as a major earthquake, is highly dependent on the
way in which people interact with the damaged physical environment. While there are extensive studies on evacuation from undamaged
structures and on structural behavior under seismic and other hazards, research on the influence of building damage on human evacuation
behavior is limited. This study presents a framework by which models for buildings and human behavior can be coupled to analyze the
dynamic influences of building damage on the evacuation process. The framework combines nonlinear dynamic finite-element modeling of
structures, probabilistic modeling of damage, and agent-based modeling of human occupants to investigate the behavior of people as they
interact with each other and with their dynamically-deteriorating environment as they attempt to evacuate the building. A case study is
presented for a typical three-story commercial office building subjected to the ground motions of the 1994 Northridge, California earthquake.
By using exit flow rates and other measures related to evacuation time histories as the outcomes of interest, it is shown how the proposed
framework can be used as a tool to enhance building design and to develop recommendations for improved evacuation strategies. An im-
portant future extension of the work is expanding the framework for multiple buildings for community-wide models of postdisaster behavior.
DOI: 10.1061/(ASCE)NH.1527-6996.0000199. © 2015 American Society of Civil Engineers.

Introduction

The study of evacuation behavior from damaged structures plays an
important role in preparedness for seismic disasters including de-
ployment of first responders and distribution of supplies (Fiedrich
et al. 2000). Evacuation models can inform casualty models, which
depend upon an understanding of how occupants are impacted by
hazards that threaten the built environment (Coburm et al. 1992).
However, data on building evacuation are rarely recorded during
actual seismic events. Therefore, to develop a realistic understand-
ing of evacuation processes after an earthquake, it is necessary to
develop a simulation method that realistically combines existing
knowledge on building evacuations with engineering expertise
in seismic impacts on the built environment. This study proposes
a computational-based framework for modeling evacuations in

buildings and demonstrates the use of this framework on a building
case study.

Background

Evacuation patterns and behaviors have been studied extensively
by researchers from a wide range of disciplines. However, nearly
all qualitative studies that have been performed are based on ob-
servations of humans evacuating in so-called drill situations where
buildings are undamaged and participants are responding to a si-
mulated emergency. Since there is no true danger in the simulation,
the participants are able to behave calmly, without behaviors such
as pushing or rushing that may occur under dangerous conditions
(Hostikka et al. 2007; Peacock et al. 2010). Studies of evacuations
that occurred in true disaster scenarios are performed retrospec-
tively, relying upon the memory of evacuees for information on
the evacuation process (Horiuchi et al. 1986; Galea et al. 2007).
It has not been possible to obtain detailed quantitative data on
evacuation processes and human behavior during evacuations in
true disaster scenarios, though methods for doing so have been pro-
posed (Gwynne 2013).

To address this data gap, many researchers have turned to com-
putational simulation and modeling to provide a better understand-
ing of evacuation. Based on how the space is modeled, these
models can be classified into continuous models and discrete mod-
els. Social force models are typical continuous models. In those
models, pedestrians are modeled as particles with certain mass
and size, and by solving the acceleration equation with some virtual
social forces, such as attraction force, repulsive interaction force,
body force, sliding friction force, and fluctuation, the particles’ po-
sitions can be determined. The most important social force model is
Helbing’s models (Helbing and Molnar 1995, 2000), in which pe-
destrian crowds in both normal and panic situations are modeled
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and to observe evacuation phenomenon, such as clogging, lane
forming and the fast-is-slower effect. However, Still (2000) high-
lights that these social-force models contradict with the basic fact
that human beings have their own choice of direction and can stop
and start at will. Cellular automaton (CA) models (Dijkstra et al.
2000; Kirchner and Schadschneider 2002; AEA-Technology 2002)
are typical discrete models. In a CA model, the evacuation area is
discretized as uniform 2D lattices or cells with one or more vari-
ables. Each cell can be empty or occupied by an obstacle, pedes-
trian, or group of pedestrians. A pedestrian can move to an empty
neighboring cell at each time step based on a set of local rules. Most
discrete models can be thought of as mutations of CA models, such
as EXODUS (Galea and Perez Galparsoro 1994), in which the
evacuation surface is discretized as node-arc topology and pedes-
trians travel between nodes through the arcs. Those discrete models
provide realistic results when crowd density is medium or low, but
have unrealistic results in high-density situations. Besides, social
behaviors among pedestrians are usually ignored. These models
focus on modeling individual behavior and interaction with others,
thus they are classified as microscopic models. The models that
focus on the system as a whole, rather than the individuals, are con-
sidered to be macroscopic. Macroscopic models, i.e., fluid or gas
kinetic models (Henderson 1971; Helbing 1992; Hughes 2000), as-
sume that pedestrians, as one homogenous population, behave like
a fluid or gas, respectively. In these models, partial equations gov-
erning the gas or fluid dynamics are used to describe how the crowd
density and velocity change with time and space. Although these
models can capture features of the whole system accurately, they
fail to reflect individual behaviors and decision mechanisms; they
are also limited to fairly simple geometries.

Agent-based modeling (ABM) is one computational technique
that can model the behavior of large numbers of interacting indi-
viduals. While the algorithms of ABMs operate primarily at the
individual level, the interactions between these individuals can gen-
erate significantly different, and even unexpected, mass response
(Epstein 1996, 1999). A wide variety of studies have utilized this
technique to examine the human aspects of evacuation. Zarboutis
and Marmaras (2004) studied the evacuation of a metro tunnel and
found significant sensitivity with respect to choices made by the
train driver and passengers. Pan (2006) modeled the evacuation
of a multistory university building that accounted for a wide variety
of crowd behaviors, including competition, queuing, herding, and
altruism. Chu et al. (2014) developed an egress simulation tool,
SAFEgress, which incorporates several important collective behav-
iors such as grouping and herding.

The present paper extends these ABM studies by incorporating
engineering models of the structural hazards faced by evacuees in
their physical environment. Additionally, novel algorithms are
presented for modeling individualistic and collective behaviors
in seismic evacuation scenarios. This paper presents the method-
ologies used to simulate the structural response to earthquakes,
the subsequent damage and casualty/injury analyses, and the evacu-
ation simulation. The results of simulated evacuations from a low-
rise commercial building are also provided. Finally, the last section
provides some conclusions from the presented work and identifies
some important future directions for the work.

Methods

To create realistic simulations of the evacuation of a building
damaged by a seismic event, a high-fidelity physics-based model
of the response of the built environment must be combined with
detailed human behavioral modeling in a manner that captures

the interactions between the building and its occupants. The pro-
posed framework accomplishes this through the use of three main
submodels: a nonlinear dynamic finite-element model to determine
the response of the structure; a probabilistic damage and loss as-
sessment model to assess building impacts and occupant injuries;
and an agent-based model to capture individual and collective
behavior of occupants immediately after shaking subsides. These
submodels and their couplings are described in the following three
subsections.

Structural Damage Modeling

To model the dynamic response of a structure under extreme seis-
mic loading, the following requirements must be satisfied. Nonli-
nearities due to large strains and large displacements must be
included to account for material yielding and member buckling,
as well as methods to capture elements that detach and fall away
from the structure as collapse occurs. Since the properties of beam–
column joints in frame structures typically play a significant role in
building response, it becomes necessary to model these connec-
tions in detail rather than simply idealizing them as rigid or pinned
connections.

This work uses LS-DYNA (Wilensky 1999), a multiphysics sim-
ulation software package developed at the Lawrence Livermore Na-
tional Laboratory, which contains tools suitable for addressing all of
these modeling requirements. Hughes-Liu beam elements (Hughes
and Liu 1981a, b) allow for cases where both large displacements
and large strains are present, since they are incrementally objective
(i.e., rigid body rotations do not generate strains). Several material
models are available to capture various assumptions on constitutive
behavior. Material number 24, referred to as Piecewise Linear Iso-
tropic Plasticity, for example, models elastic-plastic behavior in met-
allic materials and is a suitable choice for modeling the behavior of
steel under large strains. LS-DYNA can also model material failure
by calculating the plastic strain across multiple integration points in
an element, and deleting that element when the strain exceeds a user-
prescribed critical value (Hallquist 2006). Beam–column connec-
tions are modeled as nonlinear spring elements, which have been
calibrated through high-resolution simulations performed by Lim
and Krauthammer (2006). This representation of connections is
computationally efficient, and closely matches alternative macro-
modeling methods (Khandelwal et al. 2008; Sadek et al. 2011).

By subjecting a structure to a seismic ground motion and per-
forming a dynamic, non-linear finite-element analysis of its re-
sponse in LS-DYNA, it is possible to estimate overall structural
damage, including both partial or total collapse, as well as a wide
variety of other engineering demand parameters.

Probabilistic Non-Structural Damage and Injury
Modeling

While finite-element modeling is highly suitable for capturing
structural damage such as column failure and progressive collapse
of slabs, it is less suitable for capturing damage to nonstructural
elements such as cracking of partition walls or sagging of sus-
pended ceilings. It is, however, still possible to use the results
of the structural model to determine nonstructural damage. The
deterministic finite-element model of the structure can be used
to inform a probabilistic damage assessment of the nonstructural
building components (Mitrani-Reiser and Beck 2007), which
can significantly hinder human movement throughout the building
in an evacuation.

The first step in the nonstructural damage modeling is to create a
detailed nonstructural inventory from existing building drawings. It
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is assumed that certain components (i.e., suspended ceiling tiles)
are equally distributed throughout a building, with nominal proper-
ties based on the building’s size and its occupancy type. Next, the
fragility functions are gathered from existing literature and data-
bases [e.g., ATC-58 (ATC 2012)]. A fragility function defines
the probability that damage to a component exceeds a particular
damage state conditioned on a given value of structural response,
x, provided by the structural analysis. The structural response can
be described by a number of engineering demand parameters, such
as peak floor accelerations or peak interstory drift ratios. Many fra-
gility functions are formulated assuming that the probability of
damage follows a lognormal distribution, which is consistent with
the observed failure of many structural and nonstructural compo-
nents (Beck et al. 2002; Krawinkler 2005; Pagni and Lowes 2006;
Badillo-Almaraz et al. 2007). The form of these idealized fragility
functions for each damage state, d, is then described by

FXd
ðxÞ ¼ Φ

�
lnðx=xmÞ

β

�
ð1Þ

where Xd = component’s capacity to resist damage state d; xm =
median capacity for damage state d; and β = logarithmic standard
deviation. The structural response parameter, x, is determined di-
rectly as output from the structural model.

Each individual component may have multiple damage states.
These damage states are denoted as D ∈ f0; 1; 2; : : : ;mg, where
m is the total number of possible damage states, and a state of D ¼
0 indicates that the building component is undamaged. These dam-
age states are generally assumed to be both progressive and mutu-
ally exclusive. Under these assumptions, the probabilities of an
individual component being in each possible damage state are
described by

P½D ¼ djx� ¼
� 1 − FX1

ðxÞ d ¼ 0

FXd
ðxÞ − FXdþ1

ðxÞ 1 ≤ d ≤ m − 1

FXm
ðxÞ d ¼ m

ð2Þ

given by Porter et al. (2007). With the inventory of nonstructural
components and the associated fragility functions, the results from
the nonlinear structural analysis can then used to assess the prob-
abilities of being in each damage state. Given the deterministic
structural-analysis results, Monte Carlo simulations (MCS) are
performed to assess the uncertainty in evacuation times based on
variability of damaged means of egress caused by fallen debris dur-
ing strong ground shaking and of agent behaviors (described in the

following section). The damage for each nonstructural component
in the structure can be determined from Eq. (2) using an inverse
method. That is, let P½D ¼ djx� ¼ U, where U is a uniformly-
distributed random variable falling with the interval [0,1]. The dam-
age state for the given component can be solved from Eq. (2). Then
damage states for all nonstructural components are determined by
repeating this procedure.

Before the start of the simulation, the agents in the model are
designated as being in one of four health states: healthy, minor in-
juries, major injuries, or death. The probabilities for these health
states can be determined directly from the structural and damage
analyses (Mitrani-Reiser and Beck 2007; ATC 2012) when empiri-
cal data of fatality rates for specific building types are available.
However, since fatality rates were not available for the study build-
ing, the initial probabilities for the agent’s health states in the sim-
ulations were determined from the ATC-13 (Applied Technology
Council 1985) report on data for the estimation of earthquake loss
in California. This report provides probabilities of each of the
health states conditioned on building damage states. The health
states of individuals in the building impact their mobility, and thus
evacuation speed. The probabilities of health states were modified
for the study building to account for the alteration of the structural
system (making it non-code-compliant in the damaged scenario);
these modifications induce more damage and subsequently more-
complex dynamic human behavior in an evacuation.

Agent-Based Human Behavioral Modeling

The human behavioral module of the proposed framework incor-
porates a realistic heterogeneous population of building occupants
who can individually navigate through a damaged environment and
engage in a variety of social behaviors that are related to the evacu-
ation process. This module also captures important data, such as
evacuation time histories and flow rates throughout the building.
The agent-based modeling platform NetLogo (Wilensky 2010) is
used to model human evacuation after an earthquake under undam-
aged and damaged conditions.

Creating the Built Environment
The nonstructural layout of the building is imported into NetLogo
through a set of color-coded image files (Fig. 1) to create the envi-
ronment for the ABM. The environment consists of a rectangular
grid of square patches that store data about the physical features
of the environment (e.g., doors, walls, hallways, rooms, and stair-
cases) and associated damage states. Results from the damage

Fig. 1. (Color) The floor plans for the (a) ground floor; (b) upper stories, showing the locations of walls (purple), doors (red), windows (blue), exits
(green), stairs (yellow) and elevators (brown)
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assessment are imported into the space as a property of these
patches. In places within the ABM environment that should be
passable (i.e., hallway) but where damage is sufficiently severe
to prevent egress, the patch is designated as an obstacle similar
to permanent obstacles (i.e., a wall) in the ABM environment.
In places that ought to be passable but where the damage is mod-
erate, the patch will be designated as damaged, which impacts
egress with an assumed reduction in travel velocity of agents in
through these sections. The current version of the agent-based
model does not allow for cases where all means of egress are com-
promised, though future development of the framework could
easily be adapted to account for this severe condition. Since the
dimensions of each floor are identical in the study building, the
data for all floors can be overlaid on the same patch for computa-
tion efficiency. However, agents can only use the information for
the floor on which they are currently located. As in the case for
actual buildings, exit signs are included in the model to facilitate
navigation for agents unfamiliar with the building.

Creating the Agents
Building occupancy is determined by the square footage and pop-
ulation rates for the occupancy type of the study building [i.e., as in
ATC-13 (ATC 1985)], which results in an average number of peo-
ple per square foot for a standard commercial building. This num-
ber can be taken as the baseline population for the study structure,
and can then be scaled up or down to account for underpopulation
or overpopulation.

Each human in the model is then represented by a square agent.
The square shape was chosen for its ability to simulate high density
crowds, as described in Still (2000), as well as for its compatibility
with the NetLogo modeling platform. Each of these agents is as-
signed an age group (i.e., young adult or old adult, as defined
in Laufer 2003) and a gender (i.e., male or female). Based on
the case study in Gwynne and Boswell (2009) for an office build-
ing, two-thirds of the population are assigned to be young adults,
and one-third to be old adults; 44% are male and 56% are female.
Children are not included in the current model because the study
building is assumed to be an office building. Each agent’s age and
gender are used to assign a body size, based on information in Hos-
tikka et al. (2007), as well as a walking speed, stride length, and
step frequency based on data described in Laufer (2003) for flat
surfaces and Fruin (1971) for stairs with a 27° gradient. For each
MCS, each agent in the building is assigned an altruism constant
Cp, sampled from a normal distribution with a user-selected mean
(0.8) and standard deviation (0.05). A high Cp constant indicates a
high tendency towards altruistic behaviors, as described in the next
subsection. Since the simulation updates every second, step
frequencies for flat surfaces are determined by rounding the values
provided by Laufer (2003) to the nearest whole steps per second.
Preliminary ABM simulations results by the authors indicated that
restricting people’s step frequencies on stairs provides more

realistic results than restricting their stride lengths by the height
of the stair tread; this is because stairs are modeled as 2D incline
surfaces in the model. Thus, step frequencies in stairs are deter-
mined by step frequencies on flat surfaces multiplied by the ratio
of flat-surface speeds to stair-surface speeds and rounded to the
nearest whole steps. Stride lengths are determined by speeds di-
vided by step frequencies, rounded to the nearest integer. A sum-
mary of these basic agent characteristics is provided in Table 1.
Injuries can also affect the speed of an agent; agents who suffer
either minor or major injuries are assumed to have their maximum
speed reduced to 75 and 10% of their original speeds, respectively.
In addition, the severely-injured agents’ step frequencies are re-
duced to 1 step per second to reflect a decrease in their agility.

Navigating the Space
The new navigation algorithm developed for this study is designed
to allow agents to take realistically-sized steps in space without
passing through objects or other people and can take multiple steps
in each increment of time in the model. To simulate spontaneity,
agents are not constrained to synchronize their steps with the steps
of other agents or with the time increments in the model.

Each agent is programmed to navigate the space by choosing a
path in the direction of their desired evacuation goal while avoiding
obstacles and other agents along the way. The navigation is facili-
tated by using an initial feasible destination region, Pm0, shown in
Fig. 2 that is a circular area with a radius equal to the agent’s stride
length. However, before deciding the direction of their next step,
each agent examines the space around them with a radius deter-
mined by their stride length plus one half the maximum body size

Table 1. Summary of Agent Characteristics, Where the Values in Parentheses Are the Actual Speeds Used in the Model

Age group Gender Body radius (m)

Speed (m=s)
Step frequency

(steps=s) in model Stride (m) in model

Flat Stairs Flat Stairs Flat Stairs

Young adulta Female 0.24� 0.02 1.45(1.42) 0.65(0.66) 2 1 0.71 0.66
Male 0.27� 0.02 1.48(1.52) 0.81(0.81) 2 1 0.76 0.81

Old adultb Female 0.25� 0.02 0.93(0.91) 0.56(0.56) 2 1 0.46 0.56
Male 0.25� 0.02 1.06(1.12) 0.60(0.61) 2 1 0.56 0.61

aAdult aged 20–31, based on the study in Laufer (2003).
bAdult aged 65–89 based on the study in Laufer (2003).

Fig. 2. Example search of the feasible destination region for an agent
centered at the origin; dotted pattern represents patches for agents, and
the hatched pattern represents patches with obstacles; dashed lines re-
present the expanded outline of obstacles and agents; shaded grey des-
ignates the unreachable region, and the white represents the final
feasible region Pm; star represents the center agent’s evacuation target
and the solid dot shows the agent’s next position

© ASCE 04015019-4 Nat. Hazards Rev.
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of all agents. When this disk is empty of obstacles and other agents,
then the true feasible region, Pm, is equal to Pm0. If there are ob-
stacles in the space around the agent, then parts of Pm0 are actually
unreachable, and must be excluded from Pm. The definition of Pm
is then the set of all patches of Pm0 that are not in the unreachable
set, also shown in Fig. 2.

To find the unreachable region, first the obstacles are enlarged
by one-half of the agent’s body size, indicated by dashed lines in
Fig. 2, to avoid agents colliding with obstacles. Next, to ensure that
the agent does not try to pass through any obstacles, the agent uses
tangent lines to locate the boundaries of the region that is behind the
expanded obstacle from the agent’s point of view. Then any area
enclosed by an expanded obstacle’s border and the tangent lines to
this obstacle is an unreachable area, shown as the shaded grey
zones in Fig. 2; these areas are subsequently removed from
Pm0. The same process is repeated for all obstacles in the disk, leav-
ing the white zones as the final feasible region Pm. If Pm is not null,
the agent will move to a patch in Pm closest to its destination. In
Fig. 2, the agent at the center will choose to take a step towards the
solid black dot, which gets them closest to the designation (the star)
while avoiding the areas occupied by other agents and obstacles
(the shaded grey regions).

Various search-space representations, such as grids, waypoint
graphs, and navigation meshes can be used to guide an agent in
finding the shortest path to their destination. Grids are straightfor-
ward and represent the environment as patches that are either pass-
able or impassible, but are unlikely to find optimal paths from one
point to another in the building. Waypoint graphs use nodes and
lines to represent ways that are safe for traversing, but can result
in path-finding artifacts, such as unnecessary zigzagging. Naviga-
tion meshes support more intelligent decision-making in path find-
ing and are a combination of grids and waypoint graphs; they
describe the areas where agents can safely traverse without crossing
the edges of the polygon. The model in this study uses a navigation
mesh, which subdivides each floor into many convex polygons of
passable space, where each adjoining polygon shares two points
and an edge, and no two polygons overlap. Waypoints are assigned
to the vertices and edges of the polygons, simplifying path-finding
of all agents within a finite graph.

Agents who are familiar with the building may choose their des-
tinations based on their preferences or daily habits. For example, in
the case study agents on the upper floors are assumed to select the
closest staircase from their location as their destination, then go
through the staircase and finally evacuate from a side exit closest
to the staircase. For agents on the first floor, it is assumed that they
will choose the main exit as their destination unless they are on
polygons adjacent to the side exits. If an agent discovers that a des-
tination is no longer viable due to excessive damage, then they will
choose another destination instead.

The destination-seeking process is performed dynamically for
agents unfamiliar with the building, using updates based on obser-
vations from their environment. The agents will start by searching a
circular sector in front of them with a user-selected radius (the vis-
ual radius) and an angle equal to 120°, the average range of human
vision (Stidwill and Fletcher 2010). The method to determine an
agent’s visible region is the same as the method to determine
the feasible region, except other agents are not considered as ob-
stacles, and the edge of the obstacles are not expanded by half of the
agent’s body size. If agents find other people in their visible region
(the circular sector), they will consider the destination path of these
other agents and adopt the destination of the plurality. Otherwise,
individual agents will try to locate a destination on their own by
following a set of five simple rules. The first rule governs the
behavior of agents in a room or internal corridor. If inside a room

that has a door, agents will set their destination to be that door and
attempt to exit through it. If the room has no door, but agents find
an exit sign, they will face the direction indicated on the sign and
search again. If there is no door or sign, they will move randomly.
The agents retain the memory of the rooms they have already vis-
ited. The second rule governs the behavior of agents in main cor-
ridors on upper stories. Agents that are in corridors will follow the
same steps as those in rooms, but will prioritize staircases over
doors. The third rule governs the behavior of agents in the main
corridors of the ground floor; this rule is identical to the second
rule except that agents on the ground floor prioritize external exits
rather than staircases. The fourth rule governs the behavior of
agents in staircases, where agents descend until they reach the first
floor and proceed to exit the staircase. Agents also follow a fifth
and final rule which is simply to avoid rooms or corridors that they
have already been checked and have no suitable exits.

Determining Social Interactions
Agents choose whether to engage in collective and social behaviors
in the model based on their personal characteristics, input from
their environment, and interactions with other agents. Four types
of collective and social algorithms are included in the egress model:
grouping, herding, rescuing, and information sharing. Helbing et al.
(2000), Pan (2006), and Chu et al. (2014) describe grouping and
herding behavior in real and simulated evacuations. Horiuchi et al.
(1986) observed rescuing behavior in a fire evacuation of an office
building in Osaka, Japan, and Peacock et al. (2013) and Johnson
(2005) note that rescuing behavior were observed in the World
Trade Center evacuations, and have been seen in other events
as well.

Agents encountering those with whom they share social rela-
tionships trigger the grouping in this model. Social relationships,
such as coworkers in the same office or firm, are determined in the
model by each agent’s unique home-base identifier. Agents who
share the same home base are assumed to share a strong social re-
lationship. Agents whose home bases are close to each other are
also assumed to share a social relationship, but these relationships
are less strong. Only agents who are familiar with the building are
assigned a home base, and only these agents who are familiar with
the building can engage in grouping behavior directly. When agent
i, who is capable of grouping, is not in a group and encounters other
agents who are capable of grouping, they first identify the closest of
these other agents (agent j). Then, agent i will calculate the prob-
ability of forming a group with agent j based on their willingness
to group with strangers (using distance as a proxy) and their will-
ingness to group with people they know (using a ratio of their
home-base identifiers as a proxy for the strength of their social
connection), according to the following:

P½groupingij�¼
8<
:
ð1−wÞ ·fðdÞþw ·

�
1− jbi−bjj

B

�
for jbi−bjj≤B

ð1−wÞ ·fðdÞ for jbi−bjj>B

fðdÞ¼
�
1 for d≤ s

eðs−dÞ=s for d> s
ð3Þ

where w ∈ ½0; 1� = user-defined importance of social interactions;
bi and bj = home-base identifiers of agents i and j, respectively;
B = user-defined constant, which represents the maximum differ-
ence of the group number for any pair of evacuees who are con-
sidered to have a social relationship; d = distance between agents i
and j; and s = distance agent i can travel in one second. To deter-
mine if a group actually forms, a random number between 0 and 1
is generated, and if that random number is less than P½groupingij�,
agent iwill group with agent j. Once the decision to form a group is
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made, agent i sets its group to be the set of agent j and any other
agents with whom agent j shares a group. All of the other agents in
this newly-enlarged group adds agent i as a new group-mate.

An agent may switch groups if the agent is currently grouped
with people with whom it shares a weak social bond and encounters
a group with whom it shares a significantly stronger social bond. To
determine whether the agent will switch, agent i first calculates
P½groupingij� for the agent j, who has the median grouping number
of its current group, and P½groupingik� for agent k, who has
the median grouping number of the potential new group.
P½groupingik� is then scaled by Dc, which is a factor less than
or equal to one, to quantify the natural aversion to switch groups.
Then the probability of switching groups is calculated as

P½switch� ¼ P½groupingik� ×Dc − P½groupingij� ð4Þ

To determine if agent i switches groups, a random number be-
tween 0 and 1 is generated, and if that random number is less than
P½switch�, agent i will switch to the group with agent k. Once the
decision to switch groups is made, agent i is removed from the
group set of the members of the current group, empties its own
group set, then joins the new group following the steps previously
listed.

Grouping behavior has two main stages: gathering and travel-
ing. During the gathering phase, an agent finds the center of mass of
their visible group mates from its point of view, and moves towards
that center of mass until the agent is within a group radius, Rg, of
that center of mass. The group radius is determined as follows:

Rg ¼ c · Av · Lm ð5Þ

where Av = number of agents in a 60° circular sector with the agent
at the midpoint of the arc of the sector; Lm = maximum diameter of
the agents in that circular sector; and c = constant which is set as
1.1. Agents within a group are considered gathered once they are
within the group radius and then switch to the traveling mode. In
traveling mode, the agent moves towards the destination held by the
plurality of the group members. If more than one destination is held
by a plurality, one of these destinations is randomly selected to be
the group destination. In traveling mode, all members of the group
set their velocity to that of their slowest group-mate, as is consistent
with the behavior described by Proulx and McQueen (1994).

The herding algorithm in this model is reserved for agents who
are unfamiliar with the building. Their lack of knowledge of the
evacuation pathways of the building may induce a high degree
of stress (Pelechano and Malkawi 2008), which is strongly corre-
lated with following the crowd (Helbing et al. 2000; Pan 2006). The
way in which agents in the model who do not know the building
layout adopt this behavior is described previously; such an agent
simply adopt the destination held by most of the agents in its field
of vision.

Rescuing and information sharing allow agents to behave altru-
istically. Information sharing allows agents to assist others by tell-
ing them about waypoints that are no longer passable, so agents can
switch to secondary destinations without personally observing the
damage. Agents who have knowledge on newly-impassable way-
points can share this information with agents they encounter that do
not know about the status of that waypoint if their altruism constant
Cp is greater than a generated random number in [0,0.6]. Rescuing
allows agents to help each other by increasing the mobility of in-
jured agents. When a healthy (or mildly injured) agent i who is not
already rescuing someone encounters an injured (or more-severely
injured) agent j who is not currently being rescued, the healthy
agent calculates the probability of rescuing in one of two ways.
If the healthy agent and the injured agent are both not familiar with

the building, then the healthy agent’s probability of rescuing is sim-
ply equal to its altruism constantCp. If both agents are familiar with
the building, however, then the healthy agent calculates its willing-
ness to rescue using the following:

P½rescueij� ¼ CPi

�
1þ 0.5

1þ jbi − bjj
�

ð6Þ

where, bi and bj are home-base identifiers defined as in Eq. (3).
Again, a random number between 0 and 1 is generated, and if that
random number is less than P½rescueij�, agent i will choose to res-
cue agent j. Once the decision to rescue has been made, agents i
and j will move together for the rest of the simulation. They will
essentially act as one agent with a larger body size, and are assumed
to move at half of agent i’s normal walking speed. They can still
participate in grouping or herding with their combined knowledge
level and with agent i’s social characteristics.

Case Study

To illustrate the evacuation simulation framework, a case study of
an archetypical three-story, densely occupied office building is ex-
amined in detail. The case study, which forcibly damages a vertical
means of egress in the damaged scenario, is inspired by complica-
tions of evacuating occupants in the Christchurch, New Zealand
earthquake on February 22, 2011, due to the failures of staircases.

Analyzing the Archetypical Building

A low-rise steel moment–frame structure originally described in
Gupta and Krawinkler (2000) and further studied in Foley et al.
(2008) was used as the study building. This structure, shown in
Fig. 3, consists of three identical stories with a 6 × 4-bay footprint
and two staircases located in the northeast and southwest corners. It
is designed to comply with standard United States’ requirements for
dead, live, wind, and seismic loads. The original design is used as a
baseline structure in the evacuation model and an altered (non-
code-compliant) structural design is used as the damaged structure
in the evacuation model. In the altered design, the exterior moment-
resisting frames were moved to the interior of the building,
disrupting the symmetry of the building, and thereby making
the structure susceptible to increased torsional loads.

Nonstructural Layouts

To create a realistic damaged environment for the evacuating agents
in the simulations, the case-study building was populated with typ-
ical nonstructural components. The floor plans for all stories were
developed using the Los Angeles Municipal Code (LAMC 2013)
and empirical data of office buildings in the United States. The first
of these floor plans, shown in Fig. 1(a), represents the ground floor,
which includes several offices connected by various corridors. The
large entrance on the south end of the building serves as the primary
exit, while smaller fire doors at the southwest and northeast corners
service the staircases at those same locations. The building also
includes a main elevator shaft near its center, though this was
not used in the simulations because occupants are discouraged from
using elevators after an earthquake. The second floor plan, shown
in Fig. 1(b), represents the layout of the second and third floors of
the study building. Like the first floor, it consisted of several offices
connected by large main corridors. Unlike the first floor, it has no
exterior exits, and can only be accessed via the two staircases or the
elevator.
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Damage to the Built Environment

The 1994 Northridge, California earthquake with PGA 0.52g and
Vs-30 355.8 m=s [PEER Strong Motion Database, File Index 953
(PEER 2013)] was used as the input ground motion for this study.
As expected, the two structural configurations produced vastly dif-
ferent responses under this ground motion. For the original struc-
tural configuration, there was no noticeable structural damage; the
maximum structural responses were relatively small, and well
within design tolerances, which is consistent with the findings
of Gupta and Krawinkler (2000). For the altered configuration, lo-
cal collapses occurred in bays on the west side of the structure,
destroying the southwest staircase and rendering several offices
on the first and second stories impassable. The maximum floor ac-
celerations for the altered configuration increased by nearly an or-
der of magnitude compared to the original configuration. The peak
interstory drift ratios increased by nearly two orders of magnitude.
The maximum floor accelerations and peak-story drift ratios are
provided in Table 2 for the two structural configurations.

Probabilistic damage analysis (Goulet et al. 2007) is used to cap-
ture the damage of the nonstructural components that have the
largest impact on evacuation time. Focus is placed on suspended
ceilings and partition walls because they are frequently damaged
in earthquakes and can cause significant delays in the evacuation
of building occupants (Phan and Taylor 1996; Meacham et al.
2013). The locations of the partition walls coincide with the loca-
tions of all interior walls shown in the floor plans of Fig. 1. Sus-
pended ceilings were assumed to exist in all open interior spaces,
including corridors. The fragility functions of Table 3 were used to
determine the damage to nonstructural components. Finally the
nonstructural and structural damage are translated into new ob-
stacles or areas with reduced evacuation speeds in the environment

of the ABM model. An example of the damaged floor plans gen-
erated for one simulation for the altered structure is shown in Fig. 4.
In the case study, partition walls in damage state D3 will create an
additional impassable area with a thickness of 5.08 cm (2 in.)
immediately adjacent to the wall to account for debris caused
by the damage. Additionally, it is assumed that walls in damage
state D3 lose any exit signs attached to them, impacting agents that
are unfamiliar with the building. Suspended ceilings that fall are
assumed to impede foot traffic instead of completely blocking pas-
sage. Agents in areas with minor ceiling damage (D1) experienced
no drop in their velocities, but agents in areas with moderate (D2)
and severe (D3) ceiling damage experienced 10 and 25% drops,
respectively, in their maximum speeds. Suspended ceiling damage
also will create debris area along with the partition wall at its boun-
dary with a thickness ranging from 5.08 cm (2 in.) for damage state
D1 to 20.32 cm (8 in.) for damage state D3.

For the original structural configuration, nonstructural damage
was generally minor to nonexistent in all the simulations. For
the altered configuration, however, damage was significantly more
severe. Specific damage rates averaged across all simulations are
provided in Table 4.

Simulation Results

In this subsection, the results of 20 evacuation scenarios are pre-
sented, illustrating the influences of population, social behaviors,
and damage levels on evacuation times. In the case study, it is as-
sumed that the evacuation starts at the end of the earthquake and the
agents’ behaviors during the ground shaking is not considered,
though deaths that occurred during the shaking are still included
as initial conditions. The agent characteristics used to generate
these scenarios are listed in Table 5. For each scenario, the output
of the structural analysis is used to conduct 100 MCS to account for
the effects of uncertainties in nonstructural damage and human
behavior. For each MCS, a new damaged floor plan is generated
and the agents are randomly redistributed in the building. The num-
ber of simulations was determined such that the ratio of the 99.5%
confidence level to the corresponding mean 95% evacuation time is
kept within 5% as shown in Table 6; the results were averaged to
describe time-varying trends in system behavior.

Three levels of structural damage were used for the evacuation
simulations: undamaged, lightly damaged, and heavily damaged.
The undamaged structure was included to facilitate comparisons

Fig. 3. (Color) (a) Original; (b) altered designs, where locations of staircases are shown in blue and locations of the moment-resisting frames are
shown in red

Table 2. Structural Responses of the Original and Altered Building
Configurations

Structural response
Structural

configuration Floor 1 Floor 2 Floor 3

Maximum floor
acceleration (g)

Original 0.31 0.35 0.45
Altered 1.7 2.9 3.4

Peak interstory
drift ratio (rad)

Original (10−4) 1.28 6.41 6.41
Altered (10−2) 3.08 4.74 3.46
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to standard evacuation drills reported in the literature. The original
(code-conforming) structural configuration was used for the evacu-
ation simulations for the lightly-damaged level, while the altered
structural configuration that suffers a local collapse was used for
the heavily-damaged level. For each damage level, two occupancy
rates were considered to show the effects of overpopulation: an un-
crowded, normal population of 259 people and an overpopulation
of 450 people. For each combination of damage level and popula-
tion, various combinations of collective and social behaviors were
also simulated, as summarized in the first two columns of Table 6.
When no social behaviors are considered, all agents are set to be
familiar with the building and evacuate following their habitual

routines. When only herding behavior is considered, 10% of agents
are assumed not to be familiar with the building so they have to
either follow the crowd or randomly find an exit route on their
own. When only grouping behavior is considered, agents who
are familiar with the building will form groups and evacuate with
their group mates. When all social behaviors are considered, the
grouping and herding assumptions above hold as well as rescuing
behavior, which assumes that healthy agents and those with minor

Table 3. Fragility Functions of Nonstructural Components Used for Damage Assessment (Data from ATC 2012)

Nonstructural component x Damage state xm β

Partition walls Peak interstory drift ratio (rad) D1 0.0021 0.6
D2 0.0071 0.45
D3 0.012 0.45

Suspended ceiling with area <23 m2 Peak floor acceleration (g) D1 1.00 0.4
D2 1.80 0.4
D3 2.40 0.4

Suspended ceiling with 23 m2 < area < 93 m2 Peak floor acceleration (g) D1 0.70 0.4
D2 1.15 0.4
D3 1.80 0.4

Suspended ceiling with 93 m2 < area < 232 m2 Peak floor acceleration (g) D1 0.45 0.4
D2 0.70 0.4
D3 1.00 0.4

Suspended ceiling with area >232 m2 Peak floor acceleration (g) D1 0.35 0.4
D2 0.55 0.4

Note: Damage states of partition walls areD1 (screws fall out; minor cracking of wallboard occurs; tape warps or cracks);D2(moderate cracking or crushing of
wallboard occurs, typically in corners and at corners of openings); andD3(significant cracking or crushing of wallboard occurs; studs buckle; tracks tear). The
damage states of suspended ceilings areD1(5% of tiles dislodge and fall);D2 (30% of tiles dislodge and fall; t-bar grid is damaged); andD3 (Ceiling tiles and t-
bar grid collapse entirely).

Fig. 4. (Color) Example nonstructural damage for (a) floor one; (b) floor two

Table 4. Average Damage Results of Nonstructural Components

Component Floor
Structural

configuration

Damage state

D0 (%) D1ð%Þ D2ð%Þ D3ð%Þ
Partition walls 1 Original 100.00 0.00 0.00 0.00

Altered 0.00 0.00 0.00 100.0
2 Original 98.20 1.80 0.00 0.00

Altered 0.00 0.00 0.00 100.0
3 Original 97.20 2.80 0.00 0.00

Altered 0.00 0.00 0.00 100.0
Suspended
ceilings

1 Original 98.67 1.21 0.09 0.02
Altered 7.21 38.04 27.49 27.26

2 Original 97.67 2.06 0.24 0.04
Altered 0.33 27.49 17.70 72.82

3 Original 93.87 5.33 0.67 0.13
Altered 0.07 27.26 11.78 83.63

Table 5. Variables and Corresponding Values Used in the ABM
Evacuation Scenarios

Variables used in evacuation scenarios Corresponding values

Percentage of agents who are familiar with
the building

90% if herding behavior is
considered, 100% otherwise

Percentage of familiar of agents who start
in their home offices

90%

Vision range 5 m
Mean of altruism constant 0.8
Standard deviation of altruism constant 0.05
Health states Healthy = 3

Minor injuries = 2
Major injuries = 1

Dead = 0
Minor injury speed reduction 25%
Major injury speed reductiona 90%
Space scale 5.08 cm (2 in.)
Time scale 1 s
Patch size 1
aThe slowest speed of an agent is set as 1 in the model.

© ASCE 04015019-8 Nat. Hazards Rev.

 Nat. Hazards Rev., 2016, 17(1): 04015019 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

JO
H

N
S 

H
O

PK
IN

S 
U

N
IV

E
R

SI
T

Y
 o

n 
03

/0
6/

19
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



injuries may help others they encounter with severe injuries. Addi-
tionally, information sharing is included for all scenarios to ensure
agents can evacuate successfully.

For the lightly damaged structure, injury rates were based on
values reported in ATC-13 for a steel frame low-rise building:
agents had 1.2 and 0.16% probabilities of sustaining minor and
major injuries, and a 0.04% chance of fatality. Since the non-
code-compliant structural system of the heavily damaged building
is not included in the construction types listed in ATC-13, injury
rates from ATC-13 could not be used directly. Instead, the ATC-13
rates for the code-compliant structure were increased by a factor of
10 (consistent with values of other non code conforming structural
types in the same document) to represent the higher risk posed by

noncompliant structures. In addition, it is assumed that agents in
areas where complete collapses occurred suffered fatal injuries.
Agents who perished in the simulation are not rescued by other
agents and are left behind.

In each MCS, the total number of agents who exit the building
was tracked over time, as was the number of agents who exit from
each of the three exterior doors: the main exit, which has large dou-
ble doors on the south wall that lead to the main lobby; and the
northeast and southwest exits, which have smaller fire doors lo-
cated at the base of the staircases. The flow rates, shown in Table 7,
are calculated from the evacuation time histories using the slope of
the middle, linear portion of the curves. Additionally, two types of
evacuation times were calculated: the time to evacuate all occu-
pants, including the injured, shown in Table 6; and the time to
evacuate 95% of the building occupants, shown in Table 8. The
mean number of evacuees is plotted with respect to time in Fig. 5
for each damage scenario.

Model Validation
For the undamaged scenarios, the average evacuation rates should
agree reasonably well with evacuation drills of similar buildings
found in the literature. Hostikka et al. (2007) describe an evacuation
drill in which 139 people evacuate from a low-rise office building.
This evacuation takes slightly under 6 min. The flow rate from a
main door on the first floor in this evacuation is 0.59 persons per
second, and the flow rate through a fire door at the base of a stair-
case is 0.54 persons per second. These flow rates are noted by the
authors to be somewhat low, so the overall evacuation times should
be considered slightly higher than expected, but these can provide
guidance on the expected magnitude for such an evacuation. In an-
other example described by Rinne et al. (2010), the evacuation time
is around 4.2 min for 177 people and the flow rates at the exits are

Table 6. Statistics of Time to Evacuate 100% of the Building Population
for Each Damage Scenario

Damage status Behaviors included

Time
w/population =

259 (s)

Time
w/population =

450 (s)

Mean SD Con.a Mean SD Con.a

Not damaged No social behavior 230 13 3 367 22 4
Herding only 231 15 3 370 21 4
Grouping only 284 18 3 448 23 4

All social behavior 281 17 3 439 27 5
Lightly
damaged

No social behavior 378 239 47 515 211 42
Rescuing only 238 43 9 375 31 6

All social behavior 286 45 9 446 37 7
Heavily
damaged

No social behavior 1,286 508 101 1,679 582 116
Rescuing only 534 444 88 775 444 88

All social behavior 590 288 57 830 265 52
a99.5% confidence level.

Table 8. Mean 95% Evacuation Times for Each Scenario

Damage status Behaviors included

Time
w/population = 259 (s)

Time
w/population = 450 (s)

Mean SD Con.a Mean SD Con.a

Not damaged No social behavior 206 12 2 324 21 4
Herding only 207 14 3 327 21 4
Grouping only 259 16 3 401 22 4

All social behavior 256 16 3 390 23 5
Lightly damaged No social behavior 209 15 3 334 33 7

Rescuing only 207 14 3 327 20 4
All social behavior 256 15 3 394 22 4

Heavily damaged No social behavior 365 36 7 635 77 15
Rescuing only 356 19 4 583 24 5

All social behavior 442 26 5 712 96 19
a99.5% confidence level.

Table 7. Flow Rates (Persons per Second) for Exits by Scenario

Damage status
Behaviors
included

Main exit (4 m) NE exit (1 m) SW exit (1 m)

Population 259 Population 450 Population 259 Population 450 Population 259 Population 450

Not damaged No social behavior 2.21 3.10 0.51 0.52 0.51 0.52
Herding only 2.21 3.12 0.51 0.52 0.51 0.52
Grouping only 1.47 2.02 0.43 0.45 0.43 0.45

All social behavior 1.47 2.03 0.43 0.45 0.41 0.43
Lightly damaged No social behavior 2.20 3.13 0.51 0.51 0.49 0.47

Rescuing only 2.24 3.12 0.51 0.51 0.49 0.50
All social behavior 1.46 1.99 0.43 0.45 0.41 0.42

Heavily damaged No social behavior 1.58 2.22 0.50 0.52 N/A
Rescuing only 1.58 2.15 0.50 0.52

All social behavior 1.02 1.38 0.40 0.43
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around 0.97 and 1.20 persons per second, repsectively. Therefore,
the average evacuation time of 3.78 min without social behavior
and 4.65 min with social behavior can be considered reasonable
estimates. Adding social behaviors in these simulations provides
better estimates when compared to the literature, suggesting that
social behaviors play a significant role in evacuation.

The simulation flow rates at the exits are lower than in the
discussed literature and the data gathered by Rinne et al. (2010)
from 32 events, including fire drills and real events. The trend line
introduced by Rinne et al. (2010) as the relationship between the
clear door width and the flow rate is given by

J ¼ 0.59xþ 0.60 ð7Þ

where J (persons=s) = flow rate at the door; and x = clear width of a
door measured in meters. Although the line doesn’t fit the data well
and as Gwynne et al. (2009) pointed out that not only the door
width but also the doorway mechanisms can affect the flow rates
much, the trend line can still be thought to provide a guidance of the
average value of the flow rate at a door width. Based on this rela-
tionship the flow rates should be around 3 persons per second at the
main exit and 1.2 persons per second at the side exits in the model
building. Examining the simulation output more closely suggests
that the relatively low flow rate at the main exit is actually because

the full width of the door is not utilized. In simulations with in-
creased population on the first floor, the flow rate at the main exit
increases to ∼3 persons per second with social behavior and ∼4
persons per second without social behavior. The low flow rates
at the side exits are because most of people using these exits come
from upper floors through relatively narrow staircases that inhibit
pedestrian flow. Additional simulations were run to force all agents
to evacuate through the side exits. In these simulations, the flow
rates are ∼1.2 and ∼1.4 persons per second with social behavior
and without social behavior, respectively. These additional results
are compared to the empirical relationship of Eq. (7), and are shown
to match Rinne et al.’s (2010) results for the exit widths in the case
study structure. Therefore, the low flow rates in the case study are
impacted by the specific physical characteristics of the building and
also population density around an exit.

General Patterns of the Overall Evacuation Time Histories
At the beginning of a simulation, the flow is intermittent, leading to
a low average flow rate because only few people with initial loca-
tions near an exit will evacuate at this stage. As more people arrive
at the exits, the flow rate increases quickly and stabilizes at a con-
stant level as evacuees flow steadily through all the exits. If the
building is undamaged and there is only one exit, then the linear
portion of the time-history curve will continue until all people have
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Fig. 5. (Color) Averaged evacuation time history curves for (a) no damage; (b) light damage; (c) heavy damage; (d) all scenarios with and without
social behavior; solid lines represent scenarios with 259 occupants and dashed lines represent scenarios with 450 occupants; SB = social behavior
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evacuated. However, if there are multiple exits then the slope of the
time history curve will increase until all exits are at their maximum
flow capacity and will drop to lower, though still constant, levels as
the flows at one or more exits become reduced. These trends are ob-
served even when all exits are identical in size, since variations in the
floor plan may cause different numbers of evacuees to choose each
exit. Fig. 5(a) demonstrates this trend for the undamaged and lightly-
damaged scenarios, for both a population of 259 (solid lines) and a
population of 450 (dashed lines). In both of these scenarios, varying
numbers of agents choose the main, southwest, and northwest doors.
The flow rate drops when all agents who selected the main door have
exited, and drops again when all the agents who have selected the
southwest door have exited. The first of these drop-offs occurs when
roughly 30% of the people have evacuated; the second occurs when
roughly 90% of the people have evacuated. The tail end of the time-
history curve becomes extended if a small number of badly-injured
agents are not rescued and must evacuate on their own. These agents
move very slowly, resulting in an extremely long tail at the end of the
evacuation time history curve with a slope of nearly zero. Such long
evacuation times are far more likely to occur in scenarios that include
significant damage but do not include rescuing behavior.

Effects of Social Behaviors, Building Damage, and
Population

Effects of Social Behaviors
Grouping behavior will cause delays in the evacuation, as shown in
Fig. 5, where solid lines and dashed lines shows scenarios with 259
occupants and 450 occupants, respectively. This is because agents
adjust their movement to match the behavior of their social groups
and stay close to their group-mates unless they are forced to move
forward due to adjacent pedestrain flow. Consequently, a group’s
speed is lower than the speeds of individuals. It has been observed
that grouping behavior also has positive effects, such as cooperation
and reduced probability of jamming around exits. Groups can also
handle unforseen events better than individuals. However, those
behaviors and situations are not yet considered in the model, so
the negative effects of the grouping behavior may be exaggerated.

On the other hand, the herding behavior considered in the model
helps agents who are unfamiliar with the building layout find a pos-
sible evacuation route; it may also exacerbate congestion because
exits are not fully utilized. However, the positive effect of herding
behavior was more prominent in the simulations of the case study
building because only 10% agents in the model are unfamiliar with
the building. Therefore, these agents can always can find agents
with enough knowledge of the building to inform them of possible
evacuation routes without significantly exacerbating congestion.
Hence, when only herding behavior is almost equivalent to the sce-
narios where no social behaviors are considered (and where all
agents have complete knowledge of the building). Thus, the aver-
aged time histories for scenarios considering only herding behavior
are found to be nearly equivalent to scenarios without social behav-
iors, as shown in Fig. 5(a).

As expected, rescuing behavior shortens the evacuation time of
the injured people, thereby reducing the average and standard
deviation of the total evacuation time. Rescuing behavior also re-
duces the possibility that an injured person blocks evacuation path-
ways, particularly in the staircases due to their extremely slow pace.
However the rescuer and rescuee pair have half the speed of the
rescuer, thus, they will obstruct others less even though they will
occupy a larger sapce. Fig. 5(c) shows that rescuing behavior has
the greatest impact on the final portion of the evacuation event,
when over 90% of the occupants have evacuated.

In general, the averaged time-history curves of scenarios with
all social behaviors lie to the right of those curves without social
behaviors except at the final stages of the evacuations in the
severely-damaged scenarios. The distance between the curves with
social behavior and those without social behavior can be interpreted
as the time lag (delay) caused by the inclusion of social behavior.
Fig. 6 shows that the lag time of scenarios including social behav-
iors increases linearly with the percentage of people evacuated. It
also can be seen that severe building damage and overpopulation
will increase the lag time. However, this trend reverses in the final
stages of evacuations involving injured agents. This is because
badly-injured people in scenarios without rescuing social behaviors
are more likely to block evacuation pathways. Consequently, the
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evacuation times of scenarios without social behaviors approaches
and eventually exceeds the evacuation times of scenarios with
social behaviors. Nevertheless, there are linear trends for the
evacuation lag times that are valid throughout most of the time his-
tory curves for the damaged building. Specifically, the linear trend is
valid up to ∼95% people evacuated for normal population scenarios
and up to ∼90% for overoccupied scenarios. For the overpopulated
scenarios, there are more badly-injured people; typically, they enter
and block staircases only after most of people have evacuated.

The social behaviors decrease the flow rates at the main exit by
∼35% (nearly 1 person per second) and at the side exits by ∼20%
(nearly 0.1 persons per second). Again, this decrease is mainly
caused by the grouping behavior, where grouping behavior in wide
spaces is more significant than in narrow spaces. In narrow spaces,
people usually stay closer together due to restriction by obstacles and
end up traveling together. Furthermore, the results show that the rel-
ative errors of the mean evacuation times due to the consideration of
social behaviors are minimized as the evacuation progresses. For
example, the relative error continuely drops from around 50 to
60% at the early stage of an evacuation to about 20% at the final
stages of evacuation (when ∼95% people have evacuated).

Effects of Building Damage
As expected, building occupants require more time to evacuate from
a damaged building than from an undamaged building. The evacu-
ation delays are due to (1) impediments to means of egress, such as
the loss of the southwest stairwell in the heavily-damaged scenario;
(2) impediments from other physical damage, such as fallen ceiling
tiles; and (3) impediments caused by injured occupants blocking
evacuation pathways. The time needed to evacuate 95% of the oc-
cuapants from the heavily damaged building is nearly double the
time required to evacuate the undamaged structure (increase more
than 70%). Furthermore, the results show that the impacts of the
building damage is greater for a larger population. For instance,
for the scenarios with normal population the increment is more than
70% and for the overpopulated scenarios the increment is more than
80%. The evacuation time for 100% of the occupants is increased
dramatically if no rescuing behavior is considered, e.g., in the worst
case it can be around 30 min.

On the other hand, the flow rates at the side exits are not sig-
nificantly affected by building damage even when the building is
heavily damaged. This is because in all of the scenarios, the stair-
cases leading to the side exits are already fully utilized. However,
the flow rate at the main exit decreases by 30% for the heavily-
damaged scenarios because of the effects of increases in nonstruc-
tural damage and slow-moving injured occupants. The main exit is
not fully utilized even in the overpopulated case.

Effects of the Overpopulation
As expected, the overpopulated scenarios have longer mean evacu-
ation times compared to the corresponding normal population
scenarios. The 100% evacuation time for the undamaged scenarios
increases by ∼60% for the overpopulated cases. The 95% evacu-
ation time for the lightly-damaged and heavily-damaged scenarios
also increases by ∼60%. The impact of crowding in buildings is
most noticeable for the scenarios where the buiding is heavily
damaged and no social behavior is included. In these cases, the
95% evacuation time increases by ∼70%. This can be attributed
to the overpopulation, the increase in the total number of injured
people, and the impact of nonstructural damage on a greater num-
ber of individuals. The flow rates at the side exits does not increase
for the overpopulation case because people are queuing in the stair-
cases, even in the normal population case. The flow rate at the main
exit, however, increases approximately 40% because the exit is not
congested, even in the overpopulated scenarios.

Conclusions

In this paper, an agent-based model is used to simulate the evacu-
ation of individuals from a damaged structure after a seismic event.
The physical structure and its damaged state is itself simulated
by a fully-dynamic physics-based model coupled with fragility
models for nonstructural damage. A heterogenous population is
programmed into the model to account for the effects of varying
age, gender, body size, speed, and knowledge of building layout
on the evacuation process. The agents move with a time resolution
of one step per second and are programmed to detect and avoid
obstacles, including obstacles arising from structural and non-
structural damage occuring under the seismic event, as well as
the movement of people around them. The egress algorithm for
the agents includes grouping, herding, rescuing, and the exchange
of information with other agents, while maintaining goal-oriented
individualistic behaviors of evacuating the building; this is a sim-
plified mathematical model intended to capture the complex crowd
behaviors that have been observed during evacuations.

A typical three-story office building was selected as the case
study. The simulation results of the undamaged building are com-
pared with fire drills of similar buildings in the literature to validate
the agent-based model. Twenty different scenarios were created to
study the impacts of social behavior, building damage, and popu-
lation on total evacuation time. The case study shows that social
behaviors play a significant role in the evacuation process. For in-
stance, grouping behavior can result in increased evacuation time.
The mean evacuation time of an undamaged building can be under-
estimated by at least around 20% if social behaviors are ignored.
Hence, such behaviors should always be taken into account in en-
gineering-based evacuation models. The case study also showed
that in the heavily-damaged building occupants need much more
time to evacuate due to both the severe building damage and
the injured people, i.e., the time when 95% occupants evacuated
are nearly doubled. The results also indicate that a larger population
is more susceptible to the building damage. As expected, a larger
building population typically takes a longer time to evacuate. In the
case study, it is shown that, for the overpopulated scenarios, nearly
60% more time is needed to get 100% of the evacuees out of the
undamaged building and to get 95% of the evacuees out of the dam-
aged building.

It is not yet determined whether these results for this single of-
fice building can be easily generalized to estimate evacuation pat-
terns of other types of structures. The model is not exhaustive;
future iterations of the model should include cooperation among
group mates, effects of different doorway mechanisms, and varying
the delay time to begin evacuations for all agents. However, this
study does present a novel study where detailed engineering tools
(e.g., finite-element modeling) are integrated with empirically-
based human behavior models to simulate evacuation patterns
under realistic damaged conditions, which provides a way to quan-
tify the impacts of the building damage to the evacuation in a single
building for a specific ground motion.

While the proposed methods’ predictive accuracy has not yet
been fully tested, they are useful as a cost-effective simulation tool
for social scientists, engineers, and emergency managers for exam-
ining a wide range of evacuation scenarios. They can provide
insight into the effects of specific adverse situations, such as over-
population, loss of vertical egress, and vulnerable nonstructural
components. These models also provide a test platform for optimiz-
ing egress design, including the layout of floor plans to reduce po-
tential jam points and the arrangement of exit signs to promote
more-efficient evacuations. Furthermore, the models can be used
to improve evacuation procedures in existing structures, and
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support changes to fire and building codes; more-efficient evacu-
ations are critical in buildings located in tsunami risk zones as well
as buildings that may have a risk of collapsing in aftershocks. This
single-building framework can also be used to inform larger, com-
munity-wide models. The flow rates and evacuation time-histories
developed for archetypical buildings in this model can act as input
for models of evacuation in large urban areas, where many build-
ings and building types are present. Such models would play an
important role in the study of community resilience.
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