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The growing technology industry has led to the steady enhancement of expert systems, often at the cost
of increased complexity for the systems’ end users. Efforts to improve the prescriptive elements of sys-
tems, however, often prove unsuccessful, since the nature of complex and high-dimensional decision
problems is difficult to capture precisely by models and algorithms. To rectify this deficiency, comple-
mentary softwares may be used to accept decision-making input from users. In this paper, we introduce
a graphical interface-based multi-criteria decision support system for designing radiation therapy treat-
ment plans. While many automated strategies for treatment plan generation exist in the literature, they
often require a large amount of iteration and a priori decision-making in practice, so much of the planning
is done manually. Our interface, morDiRECT (the Medical Operations Research Laboratory’s Display for
Ranking and Evaluating Customized Treatments) uses the variability associated with the planning param-
eters to generate diverse plan sets automatically, creating a comprehensive and visible decision space for
users. We demonstrate morDiRECT’s generation process, built-in analytical tooling and graphical display
using four clinical case studies. In three cases, we find plans that fully dominate the benchmark forward
plans, as well as additional plans that possess potentially desirable tradeoffs for all cases. Our results
demonstrate that with relatively little upfront effort, users can pre-generate and choose from a diverse
set of clinically acceptable plans, leading to reliable treatments for head-and-neck patients.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Medical technology has advanced considerably over the past
few decades, paving the way for a rapid evolution in radiation ther-
apy treatment tools (Schimpff, 2014). As these tools grow in
sophistication, the analytical complexity and resultant cognitive
loading placed on their operators increases dramatically
(Ruotsalainen, Boman, Miettinen, & Tervo, 2009). In order to allevi-
ate some of this demand, we introduce a graphical user interface
(GUI) called morDiRECT (the Medical Operations Research
Laboratory’s Display for Ranking and Evaluating Customized
Treatments) to support expert users through the non-trivial tasks
of radiation therapy treatment planning and selection.

The radiation therapy delivery process can be broken down into
five key stages, depicted in Fig. 1. The majority of the tools
designed to facilitate this process aim to support the more
mechanical Stages 1 and 5 (21st Century Oncology, 2013; Elekta
AB, 2013; General Electric Company, 2013; IBA, 2013; Philips,
2013). In contrast, the intermediate planning done in Stages 2–4,
tends to be less supported, relying heavily on human operators
(National Cancer Institute, 2014). Due to the complex nature of
these planning stages, automated strategies such as inverse plan-
ning have become a prevalent source of discussion in the radiation
therapy literature (Romeijn & Dempsey, 2008; Webb, 2014). The
high versatility of inverse planning has also led to extensions to
similar problems within the field, such as Leksell Gamma Knife�

radiosurgery treatment (Ferris & Shepard, 2000; Ferris, Lim, &
Shepard, 2002; Ferris, Lim, & Shepard, 2003; Ghobadi, Ghaffari,
Aleman, Jaffray, & Ruschin, 2012; Ghobadi, 2014; Shepard, Yu,
Murphy, Bussière, & Bova,2015; Shepard et al., 2015; Wu et al.,
2003; Wu et al., 2004).

Inverse planning methodologies fall into a class of algorithms
that specifically target Stage 3 of the delivery process. Stage 3 is
difficult by nature as it is associated with a detailed understanding
of the technology, as well as the case at hand. While carrying out
this stage (either manually or with the help of traditional inverse
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Fig. 1. Key stages in radiation therapy delivery.
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planning software) the radiation physicist must use trial and error
to balance a potentially large number of competing treatment
objectives and complex machine specifications simultaneously.
Failure to account for all the relevant objectives can be costly for
both the patient and the hospital, as it may lead to the subsequent
rejection of the proposed plan in Stage 4, and thus require further
iterations. Proposals to remedy this issue typically employ either
automatic or interface-based extensions to the existing inverse
planning frameworks, in an effort to reduce the associated cogni-
tive loading.

Among the automatic class of extensions are several
multi-objective optimization techniques that have been broadened
to incorporate expert preferences. These methods include hierar-
chical constraint tightening (or loosening) (Breedveld, Storchi,
Keijzer, Heemink, & Heijmen, 2007), transformed statistical rank-
ings (Lourenzutti & Krohling, 2014), decision theory-based rank-
ings (Yu, 1997), stochastic analytical hierarchy processes (SAHP)
(Cobuloglu & Büyüktahtakın, 2015) and lexicographic ordering
(Long et al., 2012). A related form of automation is the
case-based reasoning approach, which circumvents the need for
concrete objectives in favour of choosing solutions based on simi-
larities to past cases (Lolli, Ishizaka, Gamberini, Rimini, & Messori,
2015; Petrovic, Mishra, & Sundar, 2011). The major drawback of
these algorithms is the rigidity that stems from an absence of
human interference. While there is a potential gain in terms of
speed and the reduction of human error, new errors are introduced
by a priori decision-making that may not be universally acceptable.
Additionally, each algorithm only outputs a single plan, meaning
that in the case of a rejection, the burden for generating a subse-
quent plan is placed back on the radiation physicist.

In practice, treatment planning can involve a high degree of
uncertainty (Romeijn & Dempsey, 2008) and even advanced algo-
rithms tend to be quite specialized and are consequently no match
for their human counterparts in terms of adaptability (Bonczek,
Holsapple, & Whinston, 2014; Haight, 2010; Wickens, Lee, Liu, &
Gordon-Becker, 2004). For this reason, successfully integrated
decision support systems should provide a well-balanced alloca-
tion of tasks between experts and automation, motivating the
interface-based class of extensions. Although interfaces are a
well-established method to support human decision making
(Grandjean & Kroemer, 1997; Korhonen & Wallenius, 1988;
Lotov, Bushenkov, & Kamenev, 2004; Wickens et al., 2004), and
have been more specifically addressed as useful in the field of med-
icine (Thyvalikakath et al., 2014; Aigner & Miksch, 2006;
Gschwandtner, Aigner, Kaiser, Miksch, & Seyfang, 2011), they are
still under-utilized in public health applications (Aigner &
Miksch, 2006; Thyvalikakath et al., 2014; Yasnoff & Miller, 2014).
Interfaces that are implemented frequently lack sophistication,
making them less effective in their task of reducing the user’s cog-
nitive load (Wickens et al., 2004; Yasnoff & Miller, 2014).

Cotrutz and Xing (2002) present an interface concept for itera-
tive radiotherapy plan improvement based on adjusting localized
areas of a commonly used plan assessment plot called a dose vol-
ume histogram, though their methodology is only intended for fine
tuning and their interface is not explicitly developed. Otto (2014)
introduces a supervised approach for iterative dose design, along
with a custom interface that uses a speedy approximation algo-
rithm to ensure treatment plans are feasible. Since dosages must
be designed before the computationally intensive optimization is
run, plan characteristics such as the duration of the treatment will
be unknown at the time of plan selection, and may consequently
suffer in quality. Hence, while utilizing the planning system is sim-
pler than unsupervised plan design, it is still a cognitively intensive
task for clinicians.

Jain, Kahn, Drzymala, Emami, and Purdy (1993) also introduce a
radiation therapy interface to support their plan ranking model,
however, this fairly simple and tabular interface is only intended
to support the selection process, not the plan generation. Hanne
and Trinkaus (2003) present a fairly comprehensive spider plot
interface called knowCube. While their interface does demonstrate
a large range of functionality, their spider plot presentation modal-
ity makes it difficult to visualize multiple plan alternatives concur-
rently and their generation process is rigidly set to generate 1000
plan alternatives, rather than taking input from the planner.
Lotov et al. (2004), Bortz et al. (2014) and Korhonen and
Wallenius (1988) all discuss the design of Pareto front based inter-
faces, but do not deal with radiation therapy, while Craft, Halabi,
Shih, and Bortfeld (2006) and Wang, Jin, Zhao, Peng, and Hu
(2014) provide an analysis of Pareto tradeoffs in radiation therapy
planning, but do not include an interface. Rosen, Liu, Childress, and
Liao (2005), Ehrgott and Winz (2008) and Aubry, Beaulieu, Sévigny,
Beaulieu, and Tremblay (2006), on the other hand, do use
Pareto-optimality to generate radiation therapy interfaces. Rosen
et al. (2005) introduce TPEx, a simplified dose volume
histogram-based interface which allows experts to navigate
through a number of allowable plans. The navigation, however, is
performed strictly in terms of dose and volume properties and ulti-
mately, the final plan is generated using a non-deterministic algo-
rithm, leading to potential inconsistencies for the end user. Ehrgott
and Winz (2008) and Aubry et al. (2006) both provide simpler
interfaces, with basic filtering functionality for plan selection.

A prevailing issue with all the above-mentioned designs comes
from the concept of choosing only Pareto optimal plans, while
simultaneously limiting the number of objectives. By restricting
the results to the Pareto front, plans with benefits that are unquan-
tified in the objective function are discarded, obscuring potentially
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high quality plans from the user. Navigating Pareto decision spaces
graphically can also be quite hard on the user, due to high dimen-
sionality associated with the multiple criteria.

We propose the morDiRECT interface as an alternative to the
existing radiation therapy planning intervention techniques.
Unlike its predecessors, morDiRECT provides a comprehensive sur-
face plot-based decision support environment that limits dimen-
sionality and places an emphasis on the decision space and the
relationship between input parameters and output metrics, rather
than outputs alone. It allows users to both generate and explore
treatments from an unbiased range of potential plans, whereas
many of its alternatives focus purely on generation or analysis
and display Pareto optimal results only. While morDiRECT could
work with a number of radiation therapy optimization algorithms,
we illustrate its performance using a deterministic, non-Pareto
radiosurgery optimization algorithm designed by Ghobadi (2014)
and Ghobadi, Aleman, Jaffray, and Ruschin (2013). The interface’s
ability to support the radiation therapy planning and analysis
processes is demonstrated on four clinical case studies.
2. Methods and materials

The morDiRECT planner, depicted in Fig. 2, is a graphical user
interface designed using MATLAB� (The MathWorks, Inc.) for the
purpose of selecting acceptable radiotherapy treatment plans. A
typical morDiRECT planning session is comprised of three parts.
The first is a supported information transfer between morDiRECT
and its users, detailing how plans are to be run (e.g., planning algo-
rithms and parameter selection) and stored (see Section 2.1). The
second is an internal application of an inverse planning algorithm
to generate the candidate plans (see Section 2.2). Finally, the third
is the supported comparison and analysis of potential plans, using
a set of built-in functions (see Section 2.3). The plans can be gener-
ated serially or in parallel, depending on available infrastructure;
either way, plan generation is automated and does not require user
supervision.

2.1. Inputs and outputs

Each treatment plan generated by the morDiRECT interface is
the product of an independent optimization, incorporating a
unique set of input parameters. These parameters are the
algorithm-specific constant terms used to represent
difficult-to-quantify features, such as mechanical specifications,
dose regulations and relative weightings, used in many inverse
planning techniques (Romeijn & Dempsey, 2008). Given perfect
information, these values could be customized to each patient,
yielding perfect plans. In reality, however, the parameter values
must be estimated a priori. The quality of the estimate can only
be determined after the fact, based on an analysis of the output
summary statistics or goal metrics collected from the optimization.
To assist in the navigation of this uncertain input–output relation-
ship, morDiRECT allows users to run multiple potential plans per
trial, which are then analyzed concurrently.

2.1.1. Input parameter selection
Due to their uncertain but substantial influence on the quality

of the final plan, the unknown input parameters from the inverse
planning algorithms are used as the drivers for morDiRECT’s plan
generation process. The values of these parameters are the inputs
for the interface and they are selected manually through the
Input Specification Menu (Fig. 3(a)). Using this menu, the value
of any number of input parameters may be adjusted from the
default as desired, while a set of up to three parameters are desig-
nated as the ‘‘driver’’ inputs, that is, parameters whose values will
be explored. Driver inputs are chosen by selecting the checkbox to
the left of the parameter’s name. Drivers are denoted as
D ¼ fD1;D2;D3g, where Di is the domain of values to be tested
for driver i.

Once a parameter has been changed to a driver, the planner has
the opportunity to assign it a range, rather than just a single value.
This action will inform the interface that the optimization should
be run multiple times, once at every value of the driving parame-
ter. When multiple drivers are selected, plans are generated
exhaustively for every combination of these input sets, such that

the total number of plans generated is
Q3

i¼1jDij.
The number of drivers is restricted to three as a product of the

interface’s ultimate objective of conveying meaningful plan trade-
offs and relationships to its users. Since outputs are communicated
through the Evaluation Window (Fig. 2), where they are displayed
with respect to their driving parameter values, additional drivers
would force the display to either take on higher dimensional
graphs, or divide the plans over larger numbers of subranges, both
of which hinder an individual’s ability to visualize the relationships
between the inputs and outputs in memory. It should be noted,
however, that users can still employ the interface to study the
interactions of more than three parameters through the use of
multiple runs, at an increased cost in terms of time and analytical
complexity.
2.1.2. Output metric selection
Since different planners may prefer to evaluate plans based on

differing criteria, morDiRECT allows users to choose their desired
outputs through the Output Specification Menu (Fig. 3(b)).
Within this menu, the planner may specify which outputs or fea-
tures are to be stored and in what capacity.

A selected checkbox to the left of an output metric indicates
that a particular metric is to be stored for later examination.
Outputs with corresponding drop down menus provide flexible
storage options. If the user chooses the ‘‘Plot and Display’’ option,
the specified output will be visible in the final display, appearing
both in its own self-titled plot, as well as in a summary panel.
‘‘Beam-on time’’, for example, has been selected for this option in
Fig. 3(b) and it can be verified to have its own plot in the upper left
corner of Fig. 2, as well as appearing in the Current Node panel of
the display (Fig. 2, E). The user could alternatively select ‘‘Display
Only’’, which would omit the plot, only displaying a summary met-
ric, or ‘‘Plot Only’’, which does the opposite, revealing a plot but no
summary data. Finally, the user can choose the ‘‘Store Only’’ option,
if s/he does not wish to reveal a metric in the final display, but
would like to save the values for future reference.
2.2. Plan generation algorithm

The selection of optimization algorithm, naturally, has a strong
influence on the quality of the generated plan alternatives. Since
some algorithms may be better suited to solving particular types
of problems, users have the freedom to integrate any number of
algorithms into the interface’s toolbox, applying them to cases at
their own discretion. For demonstration purposes, we will illus-
trate the continuous path (CP) algorithm for Elekta’s Leksell
Gamma Knife� Perfexion™ (PFX) (Elekta AB, 2013) stereotactic
radiosurgery planning (Ghobadi, 2014; Ghobadi et al., 2013). The
following section gives a brief overview of the CP algorithm, in
relation to the interface.

The CP algorithm outputs treatment plans for PFX, a stereotactic
radiosurgery delivery unit primarily designed to treat
head-and-neck targets. The delivery component of PFX is made
up of eight equidistant sources called sectors, which surround
the patient’s head, concentrating on a focal point within the gross



Fig. 2. Demonstration of morDiRECT’s Evaluation Window, displaying analogous results from representative clinical case studies 1 (top) and 2 (bottom). A: Active driver
inputs. B: Stationary projected value. C: Slider for changing value of projection. D: Pulldown menu to toggle active drivers. E: Current node summary panel. F: Plot markers. G:
Plan examination tools. H: Selection history panel.
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Fig. 3. Input and output menus. (a) The user may adjust any input and select up to three driver inputs for which to specify a finite range of values to enumerate. (b) The user
selects which output data to track, and whether to plot, display, or simply store data for future use. The selections made on both menus correspond to the upper Evaluation
Window in Fig. 2.
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tumour volume (GTV), called an isocentre. During the treatment
delivery, the patient lies on a mechanically operated couch that
shifts his/her entire body, including the GTV, aligning PFX with a
series of predetermined isocentre locations. The magnitude of radi-
ation delivered at a given isocentre is determined by the number of
sectors selected for activation and their respective collimator
diameters, or beam sizes. A total of three possible collimator diam-
eter sizes are available in PFX, allowing for varying delivery shapes
and conformities.

Inverse planning can be used to provide directions for PFX, indi-
cating which isocentre to use, which sector collimator pairs to acti-
vate and the duration and magnitude of the activation. CP planning
goes a step beyond the traditional inverse methodologies by
enforcing extra restrictions that transform the selected isocentres
into a connected path, providing a more fluid treatment delivery.
This path connectivity introduces a quicker and more homoge-
neous treatment, but also the requirement for several new param-
eters to enforce mechanical limitations (e.g., couch speed).

The CP planning algorithm is a two-part process, where each
part has its own set of adjustable parameters that act as input
for the interface. The first part is a heuristic path selection,
with parameter set P ¼ fP1; P2; . . . ; Png, and the second is a deter-
ministic dose duration optimization, with parameter set
O ¼ fO1;O2; . . . ;Omg. When the interface is used, the drivers are
selected from these parameters sets such that D#P [ O.

2.2.1. Heuristic path selection
The path selection heuristic is a grassfire and sphere-packing

hybrid, which uses the volumetric features of the target to find a

set of desirable isocentre locations, denoted Hiso. Conceptually, this
greedy algorithm iteratively finds a point within the target that has
the maximum tumour coverage. It then determines the largest
allowable spherical shot that can be delivered to the area sur-
rounding this point without exceeding the boundary of the
tumour, and removes this area from the target. This process is
repeated for a finite number of iterations. After all the selections
have been completed, the path is made continuous using a greedy
hamiltonian path and any gaps are filled with additional
isocentres.

Since this algorithm is neither exhaustive nor optimal, but
rather an empirically reliable method for finding a good path,
many of the parameters may be adjusted according to user prefer-
ence. These parameters make up set P, which includes specifica-
tion of the desired overlap between shots (‘‘Overlap’’), restriction
of the maximum distance between two consecutive isocentre loca-
tions (‘‘Step dist’’) and specification of the number of isocentres

selected giso ¼ jH
isoj (‘‘Etaiso’’). These parameters are displayed in

the ‘‘Path’’ section of the Input Specification Menu in Fig. 3(a),
where giso is selected as one of the drivers for the CP algorithm.

2.2.2. Dose duration optimization
The results of the heuristic path selection are fed into an opti-

mization model that determines both the magnitude and duration
of radiation delivery at each isocentre location. This delivery plan is
calculated through a linearized optimization model, solved using
Gurobi Solver v5.6 (Gurobi Optimization, Inc.). The model is
designed to penalize dose delivered to healthy tissue surrounding
the tumour region, while enforcing a number of mechanical and
clinical restrictions that ensure the target can be feasibly treated.
A simplified representation of the objective function can be defined
as follows:

minimize f ðzrÞ ¼Wrðzr � UrÞ

where zr is the dose delivered to a predetermined ring surrounding
the target area, Ur is the maximum allowable dose to be delivered
to this ring and Wr is the penalty weighting for overdosing.

The other major goals, such as restricting the allowable dose to
the healthy and targeted tissues, are enforced in the constraint sec-
tion of the model:

Ls 6 zs 6 Us

where Us and Ls are the upper and lower limits on the dose zs deliv-
ered to structure s, respectively. The set of weightings, thresholds
and bounds from this model make up the set O of input parameters,
displayed in the ‘‘Optimization’’ section of the Input Specification
Menu (Fig. 3(a)). The majority of the remaining parameters in this
set come from enforcing subjective restrictions. Examples include
time differential limit, �speed, which prevents rapid accelerations
and decelerations during delivery, but may detract from the overall
quality of the plan; dose uniformity threshold �duration, which
encourages uniform treatment delivery, but may hinder plan flexi-
bility; and weighting parameter xmax, which restricts the largest
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delivery time at a given isocentre, but may be detrimental for accu-
racy. Parameters �duration and xmax were selected as the second and
third driver inputs for the CP algorithm.
2.3. Decision analysis features

The morDiRECT Evaluation Window (Fig. 2) displays the
user-selected output metrics in a surface plot-based format. The
plans are sorted onto the x- and y-axes based on the driver inputs
used to generate the specified plan (Fig. 2, A). The z-axis on a given
plot is used to represent how the plan is scored in terms of a single
output metric. One complete plan description corresponds to a
node taken from the same ðx; yÞ point on the coordinates axes
across every plot in a given display window (Fig. 2, F). Users may
navigate this collection of plans using a combination of built-in
navigation and analysis functions, with the ultimate goal of devel-
oping a better understanding of available treatment options.
2.3.1. Navigation tools
Plot navigation. Since there are only two axes available to indi-

cate input parameters, but up to three driver inputs, any single
view will only reveal a subset of the plans, corresponding to a spec-
ified value of the third driving parameter, or the projected value
(Fig. 2, B). Using the slider (Fig. 2, C), the user can navigate to other
values of projection and observe how the plot contours change as
the projected value changes. The user may also toggle the drivers
assigned to the axes and projected value using the pulldown menu
(Fig. 2, D).

Plan summary tool. When the user clicks a node on any plot, the
full information from the corresponding plan is automatically
transferred to the Current Node summary panel (Fig. 2, E). From
this panel, the user is given a number of alternatives, such as dis-
playing detailed information about the plan either as dose volume
histograms (DVHs) (Fig. 4(a)) or as isodose lines on slices, which
are depictions of a given plan’s dose distribution contours overlaid
on 2D images of the target region (Fig. 4(b)), through the Plan
Examination tabs (Fig. 2, G). The plan may also be sent to the
History panel, discussed in Section 2.3.2.

Axis locking tool. The locking mechanism, located on the top of
the Current Node panel allows the user to reduce the dimensional-
ity of the graph by focusing on a smaller subset of plan alternatives.
To utilize this mechanism, the user selects a point on one of the
plots with a driver value of interest, followed by selecting the
‘‘Lock’’ control underneath that driver on the Current Node panel.
The interface responds by temporarily clearing away all plans that
Fig. 4. The Plan Examination tabs allow u
do not correspond to the selected driver, reducing the plots to a
single dimension, as in Fig. 5.

2.3.2. Analysis tools
History panel. Candidate plans can be sent to the History panel

(Fig. 2, H) using the down arrow in the Current Node panel and
later retrieved using the neighbouring up arrow. Any number of
plans may be stored in the listbox and browsed at any time, allow-
ing the user to aggregate and eliminate potential plan alternatives.

SmartSearch. The search tool (Fig. 6(a)) allows the user to
instantly navigate to the plan with the best value of any one output
metric. Clicking the name of the output automatically navigates
the Evaluation Window view to the correct projection, highlighting
the selected plan across all plots and displaying its metrics in the
Current Node panel.

Custom search. The last option in the SmartSearch tool is a
Custom Search through available plans. Selecting this option pulls
up a window (Fig. 6(b)) that provides users with an opportunity to
rank a specified number of treatment plans in terms of all key out-
put metrics. The importance factors given to each output are used
to create a normalized utility-based function that sorts all candi-
date plans according to the user’s preference. After the user clicks
‘‘Ok’’, the requested number of top plans, sorted by the utility func-
tion, are sent to the History panel. This tool may be used repeatedly
with adjusted values, allowing the user to find better compromises
based on a given dataset.

Pairs plots. Using the Options menu (Fig. 7(a)), the user may
select any number of outputs to compare in a pairwise comparison
matrix (Fig. 7(b)).

3. Results and discussion

The application of the morDiRECT interface is demonstrated
using four clinical head-and-neck case studies. For each case a
decision-space of 100 plans is generated and searched for desirable
plans, which are then compared to their respective clinical forward
(manual) plans as an illustration of morDiRECT’s performance. The
following section takes users through the plan specification, deci-
sion space analysis, SmartSearch and Custom Search phases
applied to creating and searching the decision space for each case,
yielding the results in Table 1.

3.1. Run specifications

The cases were run with equivalent sets of drivers and identical
output metrics. The following driving parameters were selected for
sers to view DVHs and isodose lines.



Fig. 5. The Current Node panel is used to lock the display at �duration ¼ 1, leaving xmax as the only active driver input, since the projected value (giso ¼ 55) is already locked.

Fig. 6. Search tools. (a) The SmartSearch tool provides shortcuts to navigate to the best plan for the selected output metric; (b) The Custom Search tool allows the user to set a
custom utility preference, optionally generating a ranked list of desirable outputs to be sent to the history panel for review.
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running all four cases, due to their ability to produce empirically
diverse results:

D ¼ f�duration;xmax;gisog;

where �duration ¼ f1;2;3;4;5g; xmax ¼ f0;5;10;15g and
giso ¼ f8s;9s;10s;11s;12sg. For our giso driver, the constant is an
isocentre density approximation and s is a size multiplier assigned
to account for the relative volume and number of voxels in a given
GTV, denoted by ratios Rvol and Rvox, respectively. We used the fol-
lowing equation:

s ¼ roundððRvol þ RvoxÞ=RvoxÞ

to obtain values of 5, 1, 4 and 8 for cases 1, 2, 3 and 4, respectively.
The output metrics collected from each plan and a short

description are provided in Table 2. The first five metrics are the
focus of our analysis, since maximum speed was satisfied for all
plans and computation time is not an indicator of treatment plan
performance, but rather the optimization process itself. We use
the information in the Desired Results column of Table 2 to guide
our plan analysis, as a rough substitute for an oncologist’s intuition
that would be used to determine the suitability of a plan in prac-
tice. It should be noted that the V100 values utilized in the cases
were not normalized, despite the common practice, in an effort
to demonstrate the full extent of the tradeoffs available to the user.
3.2. Decision space analysis

The first stage of making an informed plan selection is under-
standing the range and diversity of the potential plans available,
which in turn, sheds light on the nature of the tradeoffs at hand.
Utilizing morDiRECT, a user can obtain this information at a glance.
Each plot axis in the Evaluation Window is pinned to the upper and
lower bounds of its respective output metric, helping the user visu-
alize any deviation or clustering across the plots. A subset of this
visual information is presented numerically as summary statistics
for each of the four case studies in Table 3.

The output metric ranges will drive the focus of the user while
selecting plans. For example, Cases 1 and 3 have a very narrow
range for BS dose, within which, all plans are clinically acceptable
according to our guidelines in Table 2. For this reason, the amount



Fig. 7. Using the options menu (a), users can select the metrics to be compared via pairwise comparison plots (b).

Table 1
Summary of the findings from each of the four cases, with regards to their ability to
dominate their respective manual forward plans.

Case Dominating
SmartSearch plans

Dominating Custom
Search plan

Dominates
forward

1 2 – U

2 0 4 U

3 0 0 �
4 0 4 U
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of dosage delivered to the brainstem is unlikely to be a driving ele-
ment, despite its overall importance to clinical success. Case 4
appears to contain a number of risky plans that will overdose the
patient’s brainstem, making BS dose a primary concern. Finally,
for Case 2, the significance of BS dose will depend on tradeoff anal-
ysis and user intuition, since the values are all within the accept-
able range, but some are significantly lower than others, which is
favourable for patients who undergo multiple sessions or
treatments.

In terms of finding good solutions for Case 1, the user will likely
be concerned with the four remaining metrics, with a possible
emphasis on the BOT metric, since it climbs nearly as high as six
hours at the extremes. This value is around eleven times as large
Table 2
Output metric guidelines.

Output metric Description Desired result

Beam-on time
(BOT)

Total duration of the radiation
delivery

Lower is better

Classic conformity
index (CI)

Prescription dose (Rx)
volume/target volume

Closer to 1.0 is
better

Paddick CI (Rx to target)2/(target
volume � Rx volume)

Closer to 1.0 is
better

Brainstem (BS) dose Gy of radiation delivered to the
brainstem

615 Gy, lower
is better

V100 Volume of target receiving at
least 100% of Rx

P 98%, higher
is better

Maximum speed Fastest couch speed during
treatment

610 mm/s

Computation time Computational time for the
optimization

Lower is better
as the clinically developed forward plan and expert users would
recognize this treatment time as prohibitively large. Similarly,
Case 2 may benefit from an emphasis on conformity indices, Case
3 suffers in terms of BOT and conformity and Case 4 is a difficult
case that requires vigilance across the board.
3.3. Application of SmartSearch

Using morDiRECT’s decision support tools is far quicker than
manually browsing and provides much more information than
aggregates,which neglect the key interactions between metrics.
Table 4 displays plans that were obtained by selecting the best plan
for each output metric using SmartSearch compared to their man-
ual forward plans as a loose indication of plan quality.

It is interesting to note, for example, that while Case 1’s worst
case BOT is prohibitively large, the resulting plan does have some
merits, including a nearly perfect Classic CI, which for some users,
may be a tradeoff worth considering. It is more likely, however,
that due to the extreme nature of the tradeoff, the user would be
interested in choosing a more well rounded plan from one of the
99 alternatives. We will proceed under this assumption in demon-
strating the SmartSearch tool, which we recommend activating at
early stages in the decision process due to its simple operation,
requiring only two mouse clicks to obtain a potential treatment
plan.

For Case 1, three of the five SmartSearch plans dominate the for-
ward plan. On closer examination, however, the BOT and V100

SmartSearch plans have the same driver inputs, meaning they
are actually the same plan. These two dominating Case 1
SmartSearch plans can then be compared in more detail, using
the DVH and isodose slice viewers (Fig. 8). In an ideal DVH plot,
100% of the GTV would receive the prescribed dose while all other
healthy tissue would receive none. Similarly, each ideal isodose
slice would have the 100% Rx line following the exact contour of
the GTV with no contours overlaying sensitive organs. Since ideal
plans are not practically attainable, the generated plans do deliver
some dose to sensitive organs, however, they are both clinically
acceptable and comparable to one another, with very similar
DVHs and isodose slices. The user would decide whether it is ben-
eficial to spend an extra 8 min BOT in exchange for a slight
improvement in conformity and brainstem avoidance, in which



Table 3
Summary statistics of output metrics.

Figure BOT Classic CI Paddick CI BS dose V100

Case 1 Range [17.7,350] [1.00,1.13] [0.84,0.91] [13.2,13.3] [95,98]
Mean 79.0 1.08 0.88 13.2 97
Std dev 98.4 0.04 0.02 0.01 0.63

Case 2 Range [11.2,49.6] [1.11,1.23] [0.78,0.85] [12.6,13.2] [97,98]
Mean 20.5 1.17 0.81 13.1 97
Std dev 10.1 0.03 0.02 0.09 0.22

Case 3 Range [21.2,207] [1.07,1.24] [0.80,0.92] [13.3,13.3] [98,99]
Mean 59.6 1.14 0.87 13.3 99
Std dev 50.1 0.03 0.02 0.00 0.22

Case 4 Range [28.1,408] [1.15,1.43] [0.68,0.82] [14.3,15.1] [96,98]
Mean 99.4 1.30 0.73 14.9 98
Std dev 114 0.08 0.04 0.16 0.47

Table 4
SmartSearch plans for each output metric compared to the manual forward plan. Bolded values meet or exceed the forward plan quality for that metric.

Plans BOT (min) Classic CI Paddick CI BS dose (Gy) V100 (%) Dominates forward Driver inputs

giso �duration xmax

Case 1 Forward 32 1.14 0.85 14.4 98 – – – –
BOT 17.7 1.12 0.86 13.3 98 U 50 1 15
Classic 350.0 1.00 0.91 13.3 95 � 60 5 0
Paddick 311.6 1.02 0.91 13.3 97 � 45 5 0
BS dose 25.5 1.11 0.86 13.2 98 U 40 1 10
V100 17.7 1.12 0.86 13.3 98 U 50 1 15

Case 2 Forward 34 1.15 0.81 14.6 96 – – – –
BOT 11.2 1.22 0.78 13.1 98 � 10 1 15
Classic 49.6 1.11 0.85 12.6 97 � 12 5 0
Paddick 49.6 1.11 0.85 12.6 97 � 12 5 0
BS dose 49.6 1.11 0.85 12.6 97 � 12 5 0
V100 14.9 1.19 0.80 13.2 98 � 8 4 15

Case 3 Forward 24 1.20 0.82 14.2 100 – – – –
BOT 21.3 1.15 0.86 13.3 99 � 48 4 15
Classic 207.1 1.07 0.91 13.3 98 � 48 5 0
Paddick 195.9 1.08 0.92 13.3 98 � 48 4 0
BS dose 21.3 1.15 0.86 13.3 99 � 48 5 15
V100 43.0 1.20 0.83 13.3 99 � 32 2 15

Case 4 Forward 61 1.40 0.69 14.9 98 – – – –
BOT 28.1 1.34 0.71 15.1 98 � 96 4 15
Classic 374.7 1.15 0.82 14.6 97 � 96 4 0
Paddick 374.7 1.15 0.82 14.6 97 � 96 4 0
BS dose 407.9 1.15 0.81 14.3 96 � 96 5 0
V100 38.7 1.38 0.70 15.1 98 � 64 2 10
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case s/he would select the BS dose plan. Alternatively, the user
could continue to search for different plan alternatives.

The plans selected for Cases 2 through 4 fail to dominate the
forward plans using SmartSearch. Depending on the opinion of
the user, the plan selected for Case 2 containing the best Classic
and Paddick CI’s as well as the lowest BS dose, may in fact be the
preferred plan overall, despite its relatively high BOT and low
V100. If this were the case, the user would terminate the search,
or at the very least, keep the plan in the selection history panel
for future reference. For the purpose of this case study, however,
we will continue to search Case 2’s plan-space for a dominating
plan.

Case 3, can never dominate its forward plan using the given set
of driving parameters, since the best V100 is still less than the for-
ward plan’s perfect V100. This situation is analogous to a
real-world failure of the interface’s inverse planning algorithm to
meet clinical criteria, which can occur if the case is too difficult, cri-
teria too ambitious or if, as in our case, the chosen driving param-
eters do not correspond with the desired region of the feasible
treatment plan space. In such cases, although the entire algorithm
may be rerun with different driving parameters in the hope of find-
ing better solutions, it is also possible and time-saving to search
the current plans for interesting and perhaps acceptable treatment
plans that offer valuable tradeoffs. For instance, we note the trade-
offs made by the optimization for the best BOT and BS dose plans
resulted in a far lower dosage to the patient’s brainstem than the
forward plan, while still maintaining a nearly perfect V100. Since
these plans both dominate the forward in all but the V100, it is likely
that they would be preferred over the forward plan by most users.

Finally Case 4 failed to dominate across the board, but unlike
the previous three cases, none of the plans were even close to
acceptable. The best BOT and V100 plans deliver far too much
dosage to the brainstem, while the higher conformity and BS dose
plans would take hours to run, making all five plans undesirable.

3.4. Application of Custom Search

Since Table 4 indicates that the more promising Case 2 and 4
SmartSearch plans fell short of the user’s expectations, more bal-
anced plans can be found using the Custom Search tool. The
weightings chosen to yield the custom plan, shown in Table 5,
are roughly based on the knowledge of the decision space gained
from the previous two analysis stages. In selecting the custom
weightings for Case 2, we placed a considerable importance



Fig. 8. Visualization of the Case 1 dominating SmartSearch plans.

Table 5
Custom plans from Cases 2 and 4, and the weightings applied, compared to the manual forward plans. Bolded values meet or exceed the forward plan quality for that metric.

Plans BOT (min) Classic CI Paddick CI BS dose (Gy) V100 (%) Dominates forward Driver inputs

giso �duration xmax

Case 2 Forward 34 1.15 0.81 14.6 96 – – – –
Custom 1 19.2 1.14 0.83 13.0 97 U 11 4 5
Custom 2 19.2 1.14 0.83 13.0 97 U 11 5 5
Custom 3 19.2 1.14 0.83 13.2 97 U 10 4 5
Custom 4 19.2 1.14 0.83 13.2 97 U 10 5 5
Custom 5 14.4 1.16 0.82 13.1 97 � 11 4 10
Weights 4 2 2 1 0

Case 4 Forward 61 1.40 0.69 14.9 98 – – – –
Custom 1 265.9 1.17 0.80 14.4 97 � 88 2 0
Custom 2 30.6 1.36 0.71 14.9 98 U 88 2 15
Custom 3 37.7 1.39 0.70 14.9 98 U 64 1 10
Custom 4 38.5 1.38 0.70 14.9 98 U 64 3 10
Custom 5 39.2 1.38 0.70 14.9 98 U 64 4 10
Weights 4 1 1 6 3
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weighting on BOT, to circumvent the issue of excessively long
treatment times, but without neglecting the conformity indices,
which suffer when BOT is given exclusive preference. From our
analysis of Table 3, we had observed that the Case 2 BS dose has
a significantly wide range, so our function incorporates this metric
into the selection process as well. For the purpose of dominating
the forward plan, it is likely safe to neglect V100, since its entire
range dominates the forward plan’s value of 96, although, in reality
an expert may choose to value these features differently. Based on
these conclusions, the Custom Search menu was filled in with the
weightings, and the five best plans returned are presented in
Table 5.

We follow a similar process for Case 4, noting that BS dose is a
major issue, we give it the largest weighting, followed by BOT,
which is found to have an alarmingly high upper bound, then
V100. Again, for the purpose of forward plan domination, we apply
little importance to the CI’s, since the forward plan is known to
have weak conformity.

In both cases, four of the five custom plans dominate the for-
ward plan, providing viable and balanced plan options and illus-
trating that with some intuition into the decision space,
high-quality plans can quickly be found. It is also interesting to
note that in the absence of a human expert, the weightings
selected may lead to extreme tradeoffs that do not address the
user’s concerns. An example of this behaviour is the first custom
plan for Case 4, which is unacceptable in terms of V100 and BOT,
but is still chosen due to its excellent conformity and BS dose
metrics.
4. Conclusions and future work

We presented the morDiRECT interface, a multi-criteria deci-
sion support system, which facilitates both the generation and
decision making components of radiation therapy planning.
Applying this tool to four clinical case studies, we demonstrated
that high-quality plans can be easily generated, without the itera-
tive process characteristic of radiation therapy planning. We used
an intuitive process to quickly find excellent treatment plans from
a selection of 100 potential plans for each case. We thus reaffirmed
that supported decision making increases transparency and trade-
off recognition in an otherwise inaccessible black box function (i.e.,
inverse planning software).

Unlike many approaches presented in the literature, morDiRECT
enables experts to control the outcome of the decision making pro-
cess, rather than endeavouring to replace human input with auto-
mated class-based, statistical or plan ranking algorithms.
Using real-time, human decision making provides a distinct advan-
tage over purely automated methods in terms of flexibility in
instances of difficult-to-quantify tradeoffs. It also provides benefits
over other interface-based methods by removing the requirement
for excessive a priori decision making and restrictive Pareto opti-
mality constraints, that fail to capture potentially desirable
tradeoffs.

There are, however, certain limitations associated with
morDiRECT’s approach. Users need to provide input ranges at the
beginning of the process, which may not always be intuitive or
understood by inexperienced operators. The general heuristic
input ranges in this paper can be applied, but there is no guarantee
of their performances for a different application. There are also
repetitive calculations involved in the plan generation that are
both memory and time intensive, requiring large amounts of com-
putational power, such as a cluster, which may not be a universally
viable option.

Future work will include the development of faster methods of
plan generation, since computation time is a limiting factor for the
tractability of the morDiRECT for larger scale cases. We would also
like to investigate new ways of automating the user input compo-
nent of the interface, to shift the emphasis further towards user
decision making and away from any a priori input considerations.
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