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Abstract: This article proposes a novel methodology
that uses the bi-level programming formulation to cali-
brate the expected total demand and the corresponding
demand variability of traffic networks. In the bi-level for-
mulation the upper-level is either a new maximum likeli-
hood estimation method or a least squares method and
the lower-level is the strategic user equilibrium assign-
ment model (StrUE) which accounts for the day-to-day
demand volatility. The maximum likelihood method pro-
posed in this article has the ability to utilize information
from day-to-day observed link flows to provide a unique
estimation of the total demand distribution, whereas the
least squares method is capable of capturing link flow
variations. The lower-level StrUE model can take the to-
tal demand distribution as input, and output a set of link
flow distributions which can then be compared to the
link-level observations. The mathematical proof demon-
strates the convexity of the model, and the sensitivity to
the prediction error is analytically derived. Numerical
analysis is conducted to illustrate the efficiency and sen-
sitivity of the proposed model. Some possible future re-
search is discussed in the conclusion.

1 INTRODUCTION

Enhanced origin–destination (O–D) matrix estimation
methodologies could prove useful for transportation
planning. Traditionally, the O–D matrix is obtained by
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trip generation and distribution module using data from
plate surveys, household surveys, or roadside surveys
(Castillo et al., 2014). Such survey activities may suffer
from limited response and sampling coverage. As an al-
ternative, there are some statistical approaches for esti-
mating or calibrating an O–D matrix from observed link
flows and some prior knowledge of the O–D demand.
However, it is difficult to infer a unique O–D matrix
directly using these approaches because the number of
O–D pairs is much larger than the number of links; thus
statistical assumptions or some prior information on O–
D matrix are necessary to guarantee a unique solution.
For example, prior O–D matrix may be used as a regu-
larization which ensures the objective function to be a
convex one (Menon et al., 2015). Unlike the traditional
O–D estimation, this article proposes a supplementary
approach for calibrating the aggregated O–D demand
and corresponding variability for a regional traffic net-
work using day-to-day observed link counts, assuming
that the demand proportions are known a priori infor-
mation. The proposed method explicitly considers the
inherent volatility in demand which is commonly ob-
served in traffic networks, in conjunction with the link
flow fluctuation “caused” by demand volatility.

In this article, we present two methods to calibrate
the total demand distribution. Both methods can be rep-
resented as a bi-level programming model, which differ
only in the upper-level problem. The lower-level prob-
lem for both methods is the strategic user equilibrium
assignment model (StrUE), which accounts for day-to-
day demand volatility. The upper-level model is either
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a maximum likelihood estimation method or the least
squares method. Each of the two calibration methods is
defined as follows:

(1) The maximum likelihood method for O–D matrix
estimation with StrUE which is hereby referred to
as the MLOD method;

(2) The least squares method for O–D matrix estima-
tion with StrUE hereby referred to as LSOD.

The novelty of both methods evolves from the in-
corporation of the strategic user equilibrium model (re-
ferred to as StrUE in this article) (Dixit et al., 2013). The
StrUE model is defined such that “at strategic user equi-
librium all used paths have equal and minimal expected
cost.” For each user present in the network, they make
a route choice decision based on their knowledge of de-
mand distribution, then this chosen route is followed re-
gardless of the realized travel demand on a given day
(i.e., given demand scenario). Therefore, under StrUE,
the link flows will not necessarily result in an equilib-
rium state for any particular demand realization; in-
stead, equilibrium exists stochastically over all demand
realizations. The StrUE model was proposed to capture
the impact of day-to-day demand volatility on network
performance, and eventually route choice within the
static user equilibrium framework. The StrUE model
can take the total demand distribution as input (esti-
mated at the upper level), and output a set of link flow
distributions, which can then be compared to the link-
level observations.

In the StrUE model, each O–D pair demand is as-
sumed to be a fixed proportion of the total demand in
the system; hence each O–D pair demand varies ac-
cording to the change in total demand. Therefore, the
objective of this work is to estimate the total demand,
and perhaps more importantly, the parameters which
define the total trip demand distribution. Given the es-
timated demand distribution, the proposed method also
provides the variance of link flows (from StrUE), which
can be used as a measurement of reliability for planning
purposes.

The bi-level programming method is proposed to
eliminate the impact of strongly biased prior estimates,
where the upper-level provides information about the
total demand distribution to the lower-level StrUE
model, and the results from the StrUE model can
provide link flow distributions back to the upper level.
A benefit of the proposed model includes the incor-
poration of observed day-to-day link flows, instead
of aggregated or averaged values. Additionally, the
performance of both MLOD and LSOD methods can
be assessed by comparing the estimated link flow distri-
butions (which are a direct output of the StrUE model

based on the estimated total demand distribution) with
the simulated day-to-day link flows.

The association of link flow variables to the total de-
mand in StrUE allows for the use of day-to-day link
flows (which in return provide actual link flow distri-
butions) to calibrate the total demand distribution. The
calibration is accomplished by implementing the follow-
ing methods: (1) MLOD method, in which we maximize
the joint probability of observing the entire link flows
within a time period and (2) LSOD method, in which we
minimize the sum of the residuals of mean and standard
deviation of link flows. The main difference between
the two methods is that the MLOD method considers
every observation of link flow, and seeks to find a dis-
tribution that fits the observed link flow best, whereas
the LSOD method uses only the mean and standard
deviation of link flow as the inputs. The LSOD finds
the O–D demand that can produce a mean and stan-
dard deviation of link flows similar to the observed ones.
When data sets are typically small or moderate in size,
extensive simulation studies show that in small sample
designs where there are only a few failures or errors,
the maximum likelihood estimation is better than the
least squares method (Maus et al., 2001; Genschel and
Meeker, 2010).

An additional contribution of this research addresses
the issue of low coverage rate or failure of loop de-
tectors, which can lead to error in observed link flows
(Zhou and List, 2010). One way to mitigate the low cov-
erage rate issue was investigated by various sensor lo-
cation problem models (Gan et al., 2005; Ehlert et al.,
2006; Yang et al., 2006; Larsson et al., 2010; Gentili
and Mirchandani, 2012). In this work, sensitivity anal-
ysis is conducted to demonstrate the model’s robustness
against varying levels of detector error. In addition, the
sensitivity to error in observed link flows is analytically
derived for the proposed model, and the results are val-
idated using simulation.

The remainder of this article includes a literature re-
view of previous research in Section 2. Section 3 de-
fines the mathematical model and includes a derivation
for the analytical solution to the total demand estima-
tion. Numerical analysis is demonstrated in Section 4
where the estimated results of both methods are com-
pared; conclusions, limitations of the model, and future
research are presented in Section 5.

2 LITERATURE REVIEW

Historically, O–D matrix estimation and its calibration
mainly relied upon statistical approaches using loop
count data. O–D estimation research has since been ex-
panded to include a wide range of methods such as the
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generalized least square method (Cascetta, 1984; Bell,
1991), the maximum likelihood (Spiess, 1987), bi-level
programming approach (Yang et al., 1992), Bayesian
approaches (Maher, 1983; Tebaldi and West, 1998),
and maximum entropy (Fisk, 1988). Integration of the
methods mentioned above was also of recent interest
(Aerde et al., 2003; Castillo et al., 2014). Statistically, the
maximum likelihood method estimates a set of param-
eters for a probability density function to fit the ob-
servations, that is, it maximizes the joint probability of
observing the existing data, and a preassumed distribu-
tion is normally required. The method of least squares
is a standard approach to approximate the solution of
overdetermined systems, that is, sets of equations in
which there are more equations than unknowns, such
as linear regression. In this article, these two traditional
methods, generalized least square method and maxi-
mum likelihood, are modified and applied to calibrate
the total network demand.

In many literatures, estimation of the O–D matrix is
a once-off procedure, that is, calibration/estimation of
O–D matrix is only performed once. This may lead to
some issues when the network is congested, the prior in-
formation on O–D matrix is inaccurate, or data noise is
not insignificant. In the bi-level programming approach
proposed in this article, the upper level is an O–D ma-
trix estimation problem and the lower level is the as-
signment of O–D trips. Yang et al. (1992) first intro-
duced the convex bi-level optimization problem, which
was later extended to account for link flow correlation
(Yang, 1995). The heuristic algorithm, which is a global
optimum technique, was applied to solve the upper level
in Yang (1995), Kim et al. (2001), and Stathopoulos and
Tsekeris (2004); however, the solution was not proved
to be optimal mathematically. Codina et al. (2006) pro-
posed two algorithms under the bi-level programming
framework: one sought for an approximation of the
steepest descent direction for the upper level and one
linearized the lower-level assignment problem. In ad-
dition, an iterative column generation algorithm was
demonstrated based on the characteristics of path cost
function continuity, and the solution was proved to be a
local minimum (Garcia-Rodenas and Verastegui-Rayo,
2008). However, the aforementioned algorithms were
only applied on a small network. In this article the pro-
posed bi-level programming approach is proved to be
applicable to medium-sized networks such as the Ana-
heim network.

Typically, the objective of O–D matrix estimation is
to optimize an objective function (which may vary based
on model requirements) subject to a set of constraints
(typically the flow conservation and the link-path in-
cidence relationship). However, the problem is often
challenging due to that the number of monitored links

in a traffic network is often much smaller than the num-
ber of O–D pairs to be estimated; therefore it may not
be possible to obtain a unique solution from a single
set of link counts alone. Furthermore, the problem has
been extended to account for the stochastic nature of
flows (Lo et al., 1996; Lo et al., 1999), and the time-
dependent characteristics of the network (Bierlaire and
Crittin, 2004; Frederix et al., 2011). Some computer-
aided heuristic algorithms are also applied to this prob-
lem (Stathopoulos and Tsekeris, 2004). The genetic al-
gorithm, which is a heuristic search method, plays an
important role in the O–D estimation problem (Kim
et al., 2001; Baek et al., 2004; Yun and Park, 2005;
Kattan and Abdulhai, 2006). The main advantage of the
genetic algorithm is its capability of solving nonconvex,
complex optimization, whereas the drawback is that the
solution is not guaranteed to be optimal. In addition,
path flow estimator techniques also provide O–D spe-
cific flows, which could be used in the estimation of O–
D matrix (Sherali et al., 1994; Chootinan et al., 2005;
Chen et al., 2009) but this model either needs path enu-
meration (Sherali et al., 2003) or information on the set
of shortest paths (Nie and Lee, 2002; Nie et al., 2005).
Some other methods have also been proposed by re-
searchers to enhance the model applicability, such as
multi-class O–D estimation (Baek et al., 2004; Wong
et al., 2005), fuzzy-based approach (Xu and Chan, 1993;
Reddy and Chakroborty, 1998; Foulds et al., 2013) and
neutral network-based approach (Gong, 1998). How-
ever, issues regarding computation complexity and the
application to large-scale networks still remain a chal-
lenge.

On the other hand, higher order information of a net-
work, such as the variance and covariance of observed
link flows, can potentially provide more constraints to
the optimization problem. This is considered as net-
work tomography problems in statistics and computer
science literature (Vardi, 1996; Cao et al., 2000; Airoldi
and Blocker, 2013; Hazelton, 2015), but its application
in transportation models is yet to be fully explored. Cre-
mer and Keller demonstrated that aggregating or aver-
aging link count data collected over a sequence of time
periods may result in the loss of important informa-
tion (Cremer and Keller, 1987). Hazelton (2003) pro-
posed a weighted least squares method to account for
the covariance of links and assumed a parameter to ex-
plain the circumstances when the variance exceeds the
mean if a Poisson distribution is used. Bell (1983) pro-
posed a maximum likelihood method and found the an-
alytical solution to the covariance of O–D matrix by
using a Taylor approximation. However, the assump-
tions made in these studies may limit the model appli-
cability. For example, the O–D demand was assumed
to follow the Poisson or multinomial distribution, which
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stipulates certain relationships between the mean and
variance of the O–D demand. In monitored networks,
loop detectors can easily provide link counts on a day-
to-day basis; therefore, it is important to consider the
variation of link flows and the distribution of O–D total
demand as effective information to calibrate the O–D
trip matrix (Wen et al., 2015). In this study, the StrUE
traffic assignment model assumes the O–D demand fol-
lows a lognormal distribution, which allows the mean
and variance of total demand to be different from each
other, and assures the nonnegativity of the demand. The
proposed model in this article, therefore, uses link flow
variation to provide a robust estimation of total demand
while maintaining computation efficiency.

Estimation of the O–D trip matrix also requires
a proper assignment model. When applying the as-
signment model to a large network, realism and
computational complexity are both critical in determin-
ing a model’s practical applicability. Further, a major
complication in transportation modeling is the ability to
properly account for the inherent uncertainties regard-
ing demand (Bellei et al., 2006; Kim et al., 2009; Szeto
et al., 2011) and capacity levels (Brilon et al., 2005; Wu
et al., 2010). Additionally, as has been noted, uncer-
tainty regarding these variables directly affects route
choice behavior (Uchida and Iida, 1993) and traffic pre-
dictions (Duthie et al., 2011). It is, therefore, necessary
to incorporate these stochastic elements into models
to ensure robust planning capabilities, but to do so in a
manner that maintains computational tractability. The
strategic user equilibrium (Dixit et al., 2013) effectively
accounts for the impact of demand uncertainty subject
to Wardrop’s UE conditions, and under the static user
equilibrium, the computation tractability and simplicity
are preserved. The model was extended to the dy-
namic traffic assignment (Waller et al., 2013), road
pricing scheme (Duell et al., 2014), and independently
distributed O–D demands (Wen et al., 2016).

The contribution of this study can be summarized as
follows:

(1) We apply the strategic user equilibrium model,
which explicitly accounts for demand volatility in
users’ routing mechanism. It can also provide link
flow fluctuation based on demand volatility.

(2) We assume the total demand follows a lognormal
distribution, a lognormal distribution allows the
variance and the mean of the total demand to be
independent, and nonnegative demand estimation
is guaranteed.

(3) Given the day-to-day link flow fluctuations, we es-
timate the total network travel demand distribu-
tion using two different methods: (i) the MLOD
method and (ii) LSOD method. The performance

of both methods is evaluated and compared for a
medium-sized network and large-sized network.

(4) A bi-level formulation is proposed, which reduces
the impact of biased initial estimates. Both up-
per level and lower level are proven to be strictly
convex.

(5) O–D estimation results from the proposed meth-
ods are presented and compared for both analyti-
cal and simulated analysis.

3 PROBLEM FORMULATION

This section defines the mathematical concept of the
model. Table 1 defines the notations used in this article.

In this article, two assumptions are made to guarantee
consistency, uniqueness, and computation simplicity:

(1) Each O–D pair demand is proportional to the to-
tal demand and the demand proportions are fixed.
That is, the objective of this article is to scale
each O–D demand distribution while preserving
the demand proportions. Statistically, this means
we have more confidence in the demand propor-
tions but not the exact number of trips. Similar to
the traditional O–D estimation approaches where
even a full prior O–D matrix is assumed to be
known (not necessarily, but in several models the
prior O–D matrix guarantees uniqueness of the so-
lutions), the demand proportions can be regarded
as prior information, which is obtained from other
transportation techniques such as gravity model or
census data. These techniques can provide com-
paratively reliable demand proportions, and the
use of loop detector data in this article provides a
way to calibrate the number of trips. Note that this
assumption of known priori O–D proportions may
limit the model’s applicability, but it also guaran-
tees the model’s uniqueness. In some scenarios,
such an assumption may be relaxed if uniqueness
is not considered critical.

(2) The trip demand is assumed to follow a certain
statistical distribution; previously a lognormal dis-
tribution has been used (Kamath and Pakkala,
2002; Zhao and Kockelman, 2002; Duell et al.,
2014; Wen et al., 2014). Under the assumption of
a log-normally distributed demand, this article fo-
cuses on estimating the demand distribution pa-
rameters. Note that other distributions can also be
used if they do not change the convexity of the ob-
jective function, and preserve the positiveness. In
addition, for the StrUE model a log-normal dis-
tributed total trip demand allows for a closed form
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Table 1
Summary of notations

Symbol Definition

N Link (index) set.
Krs Path set for O–D pair rs.
A Node (index) set.
pn Proportion of total demand on link n; P =

(p1, . . . , pn).
tn() Travel time on link n; t = ( . . . ,tn , . . . ).
tn f Free flow travel time on link n.
qrs Fraction of total demand that are between O–D

pair r-s;
∑
∀rs

qrs = 1.

T Random variable for total demand with
probability distribution g(T ).

g(T ) Lognormal probability density function of the
total demand.

xni Observed flow on link n, for day i.
ln Flow on link n.
hrs

k The proportion of flow on path k, connecting O–D
pair r-s.

Cn The capacity on link n.
δm

n,k Indicator variable

δrs
n,k = {1 i f n is included in path k

0 otherwise
, which

indicates if link n is on path k for O–D pair rs.
(�rs)n,k = δrs

n,k; � = (. . . , �rs, . . .)
μ The location parameter for a lognormal

distribution, which is also mean of the
corresponding normal distribution.

σ 2 The scale parameter for a lognormal distribution,
which is also the variance of the corresponding
normal distribution.

mT The expected total demand.
vT The variance of the lognormal distribution.
mn The expected link flow on link n.
vn The variance of link flow on link n.
sT The standard deviation of the total demand.
sn The standard deviation of flow on link n.
cov The coefficient of variation, which is defined as the

ratio of the standard deviation to the mean of a
variable.

Std() The standard deviation of a variable.
E() The mean/expectation of a variable.

expression of the probability density function,
which helps to construct the model analytically.

3.1 The Strategic user equilibrium assignment model
(StrUE)

The StrUE model is used as the assignment model for
the O–D estimation, and details of the StrUE model can
be found in Dixit et al. (2013). In summary, the StrUE
model has the following objective function:

Minimize : z ([p]) =
∑
nεN

pn∫
0

+∞∫
−∞

tn ( f T ) g (T ) dT d f, (1)

Subject to: ∑
k

hrs
k = qrs, ∀k, r, s, (2)

hrs
k ≥ 0, ∀k, r, s, (3)

pn =
∑

r

∑
s

∑
k

hrs
k δrs

n,k, ∀k, r, s. (4)

In this formulation, users’ strategic choice is denoted
as the link proportions pn , that is, the link flow di-
vided by the total demand T; [p] represents a vec-
tor of all the link proportions; and f is a dummy
variable for integration. Each O–D demand is the
fixed demand proportion qrs multiplied by the total
demand T, that is, each O–D demand is proportional
to the total demand, and the proportions are fixed con-
stants. This implies that all O–D demands are perfectly
correlated. The total demand is assumed to follow a cer-
tain distribution. The objective function is the sum of
the integrals of the expected value of the link cost func-
tions; the link proportions are proved to be unique un-
der the assumption of fixed demand proportions. Note
that in StrUE users will stick to their link choice pro-
portions pn regardless of the realized total demand
day-to-day (i.e., once decided, pn is a constant in the
formulation), whereas link flow does vary every day cor-
responding to the realized total demand. In many O–D
demand calibration literatures, the users’ route choice
is assumed to be either a known a priori or obtained
from a traditional assignment model. In this article, the
StrUE explicitly accounts for demand uncertainty and
its impact on users’ route choice while maintaining the
computation simplicity, and is integrated into the total
demand calibration context, which has rarely been done
in the past literature.

The link travel time function for the StrUE model is
defined by the U.S. Bureau of Public Roads (U.S., 1964)
cost function due to its widespread use in transport plan-
ning models:

tn (ln) = tn f

[
1 + α

(
ln

Cn

)β
]

, (5)

where α and β are the parameters for the BPR function.
The fraction of the total demand between O–D pair r-
s, namely qrs, can be obtained from the prior estimates,
that is, census data, gravity model. The total demand is
assigned to each link by the link proportions:

ln = pn T pn ∈ P, n ∈ N . (6)
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The link proportions are obtained from the StrUE as-
signment model, therefore it is known constant in the
O–D matrix estimation problem and total demand is the
stochastic variable; from Equation (6), each link flow
is the link proportions multiplied by the total demand
variable. According to the properties of lognormal
distribution, if the total demand variable follows a
lognormal distribution, then the link flow represented
in Equation (6) also follows a lognormal distribution,
which is related to the total demand distribution by the
following equations:

mn = pn mT , (7)

vn = p2
n vT . (8)

3.2 The maximum likelihood O–D estimation
incorporating the strategic user equilibrium
(MLOD)

In MLOD, we first find the parametric expression of
the probability density function of link flow distribution.
The parameters for the link flow distribution can be ob-
tained by the definition of lognormal distribution:

μn = ln mn − 1
2

ln
(

1 + vn

m2
n

)
, (9)

σ 2
n = ln

(
1 + vn

m2
n

)
. (10)

Substitute Equations (7) and (8) into Equations (9)
and (10), we have the transformation of the total de-
mand distribution to link flow distribution:

σn = σT , (11)

μn = lnpn + μT . (12)

It is important to realize that μ and σ 2, which ap-
pear in the equations of the lognormal distribution, do
not denote the mean and the variance of the lognor-
mal distribution, but of the corresponding parameters
of the normal distribution. The mean and the variance
of the lognormal distribution are indicated in the follow-
ing discussion by m and v. Since each link flow follows a
lognormal distribution, the probability density function
of observing xni trips on link n is

P (xni ) = 1

xniσn

√
2π

e
− (ln xni −μn)2

2σ2
n n ∈ N , (13)

where, xni is the observed flow on link n for a fixed time
period (e.g., the flow rate during morning peak hours)
on day i. Here the observed link flows are indicated by

an n-by-i matrix, where n is the number of links and i is
the number of observations:

Xni =

⎡
⎢⎣

x11 · · · x1i
...

. . .
...

xn1 · · · xni

⎤
⎥⎦ . (14)

The maximum likelihood method here is to maximize
the joint probability of observing all sets of link flows,
in order to reduce the effect of noise and observation
failure. The joint probability density function is given
by the following equation:

j (Xni ) =
i∏
1

n∏
1

1

xniσn

√
2π

e
− (ln xni −μn)2

2σ2
n . (15)

Conventionally, we maximize the logarithm of the
joint probability, because taking the log of the func-
tion will not change its convexity. By plugging Equa-
tions (11) and (12) into Equation (15) and changing the
signs, the objective function becomes:

min : J (μT , σT ) =
i∑
1

n∑
1

[
ln(xniσT

√
2π)

+
(

ln xni
pn

− μT

)2

2σT
2

, (16)

subject to: σT > 0.
The Hessian matrix of the objective function is posi-

tive definite, hence the function is strictly convex, which
guarantees the solution is globally optimal and unique.
Note that convexity is critical for transport planners,
because if there exist multiple optimal solutions to the
objective function it would be difficult to perform the
subsequent analysis which is based on the estimated O–
D matrix. The optimal solutions can be found by taking
the first derivative with respect to mean and variance of
total demand:

μT =
∑i

1

∑n
1 ln xni

pn

ni
, (17)

σ 2
T =

∑i
1

∑n
1

(
ln xni

pn
− μT

)2

ni
(18)

Sensitivity is a measurement of a model’s robustness,
in the proposed model, observed loop counts may be er-
roneous due to loop detector failure, and here the error
term is expressed as a matrix that has the same dimen-
sion as the observed loop counts:

Eni =

⎡
⎢⎣

e11 · · · e1i
...

. . .
...

en1 · · · eni

⎤
⎥⎦ . (19)
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Note that in lots of previous literature the error term
is assumed to be Gaussian, that is, the error term is
a variable which follows a normal distribution. More
generally, in this article the error term is modelled as
a variable, and thus no distributional assumptions are
required. The loop count matrix with error term is:

Rni = Xni + Eni =

⎡
⎢⎣

x11 + e11 · · · x1i + e1i
...

. . .
...

xn1 + en1 · · · xni + eni

⎤
⎥⎦ . (20)

The corresponding estimated μT and σ 2
T based on ob-

served loop counts with error term are represented as
RμT and Rσ 2

T :

R μT =
∑i

1

∑n
1 ln xni +eni

pn

ni
, (21)

R σ 2
T =

∑i
1

∑n
1

(
ln xni +eni

pn
− RμT

)2

ni
. (22)

From the definition of lognormal distribution, the
corresponding expected total demand with and without
error term are expressed as RmT and mT , respectively:

mT = eμT +0.5σ 2
T = e

∑i
1

∑n
1 ln

xni
pn +0.5

∑i
1

∑n
1 (ln

xni
pn −μT )2

ni , (23)

RmT = eRμT +0.5Rσ 2
T = e

∑i
1

∑n
1 ln

xni +eni
pn +0.5

∑i
1

∑n
1 (ln

xni +eni
pn −RμT )2

ni .

(24)

The sensitivity function of the expected total demand
is

RmT − mT = e

∑i
1

∑n
1 ln

xni +eni
pn +0.5

∑i
1

∑n
1 (ln

xni +eni
pn −RμT )2

ni

−e

∑i
1

∑n
1 ln

xni
pn +0.5

∑i
1

∑n
1 (ln

xni
pn −μT )2

ni . (25)

Also, the analytical solution of the standard deviation
of the total demand with and without error term can be
expressed as RsT and sT , respectively:

sT = eμT +0.5σ 2
T

√
eσ 2

T − 1 = e

∑i
1

∑n
1 ln

xni
pn +0.5

∑i
1

∑n
1 (ln

xni
pn −μT )2

ni

×
√

e
∑i

1
∑n

1 (ln
xni
pn −μT )2

ni − 1,

(26)

R sT = eRμT +0.5Rσ 2
T

√
eRσ 2

T − 1

= e

∑i
1

∑n
1 ln

xni +eni
pn +0.5

∑i
1
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The sensitivity function of the standard deviation of
total demand is:
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(28)

Note that although Equations (17) and (18) already
provide the formula for the estimator and hence also
the dependence on the noise terms, the complication in
Equations (25) and (28) mainly stem from converting
μT and σT to the mean and variance of the total de-
mand due to that showing the mean and variance could
be more intuitive than showing parameters themselves.

The analytical expression of the sensitivity function
indicates some characteristics of the estimated results if
we design the sensitivity analysis as following:

(1) The specific error: the proportion of the error term
eni to the actual flow xni on link n:

eni = kxni , n ∈ N . (29)

(2) The systematic error: the number of links that are
under a specific error:

epi = kx pi , p ∈ P, P ∪ Q = N , (30)

eqi = 0, q ∈ Q, P ∪ Q = N . (31)

where P is the set of links with error and Q is the set of
links without error. The expected total demand is mono-
tonically increasing with respect to the systematic error
and specific error, but the estimated standard deviation
of total demand is not monotonic with respect to the sys-
tematic error, because from the analytical expression in
Equation (28) we can see it is determined by several fac-
tors including link proportion, link flow and the specific
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error. The combined effect of these factors does not sat-
isfy monotonicity. Some discrete scenarios are designed
in Table 3 to quantify the impact of error in a simplified
way.

3.3 The least squares O–D estimation incorporating
the strategic user equilibrium (LSOD)

Using the similar notations in the MLOD method but
a different statistical method, the LSOD method mini-
mizes the sum of the squared residual in mean and stan-
dard deviation of link flow:

min : Obj (mT , sT ) =
n∑
1

(pnmT − mn)2

+
n∑
1

(pnsT − sn)2
. (32)

Comparing to maximum likelihood method, the least
squares method does not require distributional assump-
tions on link flow. Here the link flow is still assumed to
be a random variable, with mean mT and variance sT .
It is shown that the Hessian matrix is strictly positive,
therefore the objective function has unique optimal so-
lution, which can be found when the first derivative of
the objective function is equal to zero:

∂Obj (mT , sT )
∂mT

= 0 → mT =
∑n

1 pnmn∑n
1 p2

n

, (33)

∂Obj (mT , sT )
∂sT

= 0 → sT =
∑n

1 pnsn∑n
1 p2

n

. (34)

Similar to the maximum likelihood method, the es-
timated mean and standard deviation of total demand
with error term can be expressed as RmT and RsT , re-
spectively:

R mT =
∑n

1 pn

∑i
1(eni +xni )

i∑n
1 p2

n

, (35)

R sT =
∑n

1 pn Rsn

i × ∑n
1 p2

n

. (36)

Therefore, the sensitivity expression of estimated re-
sults can be obtained:
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(38)

In LSOD method, the sensitivity function of both
the mean and standard deviation of total demand illus-
trates its monotonicity with respect to systematic error
and specific error. The sensitivity analysis will prove the
monotonicity in both methods in Section 4.

If we compare the optimal solution of both MLOD
and LSOD methods, since the logarithm calculus in
MLOD method (see Equations (17) and (18)) is only
defined for strictly positive numbers, loop counts data
needs to be filtered out when either loop counts or link
proportions equals zero. Therefore, MLOD may not be
used if a network has too many links with zero loop
count.

3.4 The bi-level iterative process

Assuming that the StrUE model represents the route
choice behavior, we can formulate a bi-level program-
ming problem, where the upper level is either MLOD
or LSOD, and the lower level is the StrUE assignment
problem. The input to the upper level is the fixed de-
mand proportions, link proportions, and loop detec-
tor data, the output is the total demand distribution.
The total demand distribution, in conjunction with the
fixed demand proportions, will then be used as input
to the lower-level problem, which produces the link
proportions. The objective functions of both the up-
per and the lower level are strictly convex, the con-
straints are also convex, which means the optimiza-
tion model always have feasible solutions. However,
it should be noted that the bi-level programming op-
timization program may not be convex, because the
optimization variable of the upper level is the param-
eters of the demand distribution whereas that of the
lower level is the link proportions, and if the Karush-
Kuhn-Tucker (KKT) conditions of lower-level opti-
mization problem were plugged in as the constraints
for the upper-level problem, they are no longer con-
vex with respect to the upper-level’s optimization vari-
able (the demand distribution parameters). Therefore,
the iterative process may not converge. Despite this,
when the initial solution is close to the actual one, the
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solution will very likely be the global optimal because
the search domain will be limited to a certain neigh-
borhood of the optimal solution. Experiences have
shown that in some cases the results are encourag-
ing (Yang et al., 1992). In this article, a 4-step so-
lution algorithm has been proposed to the bi-level
programming:

(1) Initialization: k = 0. Start from the prior O–D ma-
trix; obtain the demand proportions qrs and initial
values for the mean and the variance of the to-
tal demand. Using this total demand distribution
as the input and implement the StrUE model to
get a set of link proportions [p]k (which provides
the proportions of users choosing each link). Note
that qrs will be kept invariant over the bi-level it-
erations, whereas μk

T and σ k
T will be calibrated.

(2) Optimization: Substituting the link-flow propor-
tion matrix [p]k , solve the upper-level to obtain
μk+1

T + and σ k+1
T of the total demand.

(3) Simulation: Using μk+1
T and σ k+1

T , apply the
StrUE model to produce a new set of link flow
proportions [p]k+1.

(4) Convergence test: Calculate the deviation between
analytically estimated and observed link flows, and
the deviation between analytically estimated to-
tal demand distributions of two consecutive iter-
ations, when both of them have met the stopping
criterions (the relative change is smaller than a
critical value), stop.

4 NUMERICAL RESULTS AND ANALYSIS

4.1 Example of a moderate-scale network: the Sioux
Falls network

The objective of the analysis is to test if the MLOD
and LSOD can effectively estimate the total demand
distribution from day-to-day simulated link flows. The
simulation approach consists of artificially determining
the total demand distribution (In Sioux Falls network,
the expected total demand is provided, the simulated
standard deviation of total demand is assumed here.)
and generating random link flow samples accordingly.
The simulated link flows are used to represent day-
to-day observed link flows discussed in the previous
parts. The estimated total demand distribution should
closely approximate the simulated total demand distri-
bution; the link flow distribution produced by the StrUE
model should also closely match the simulated link
flows. The analysis reveals both proposed estimation
methods will reproduce the desired total demand distri-
bution from the random samples with perturbed prior

Fig. 1. The Sioux Falls network.

estimates. The analysis also reflects the scalability of
the both MLOD and LSOD to networks of substantial
complexity.

Numerical tests are conducted on the Sioux Falls
network (24 nodes and 76 links). The network prop-
erties are predefined in Bar-Gera (2012a,b) (see
Figure 1). The notations used in this section are defined
in Table 1. Each O–D demand is specified as a propor-
tion of the total network demand, therefore the demand
for a given O–D pair is the O–D proportion multiplied
by the total demand. The BPR function parameters α

and β are set to 0.15 and 4.0, respectively.
The simulated link flows are generated by the follow-

ing way:

(1) The parameters μT , σT are determined for the
simulated total demand.

(2) We implement the StrUE based on the simulated
total demand distribution and obtain a set of link
proportions.

(3) We generate 100 samples of the total demand from
the lognormal distribution using μT , σT as param-
eters and each sampled total demand is assigned to
the network using the precalculated link propor-
tions.

Note that by doing this we assume that StrUE can
represent users’ route choice behavior. In the real
world, users’ travel behavior is extremely complicated
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Table 2
Different scenarios of initial estimation of the O–D matrix

Scenario Scenario description mT sT

1 mT = 0.8m A and cov = 0.1 288,480 28,848
2 mT = 0.8m A and cov = 0.3 288,480 86,544
3 mT = 1.2m A and cov = 0.1 432,720 43,272
4 mT = 1.2m A and cov = 0.3 432,720 129,816
5 mT = 1.5m A and cov = 0.1 540,900 54,090
6 mT = 1.5m A and cov = 0.3 540,900 162,270
Simulated m A = 360, 600 and cov = 0.2

and is still an open question, which is beyond the scope
of this article. The simulated expected total demand of
the Sioux Falls network is m A = 360, 600, and the co-
efficient of variation (cov) is equal to 0.2, that is, the
standard deviation is 20% of the expected total demand.
In Table 2, scenarios 1–6 represent different initial
estimates of the total demand distribution. From the
simulation all the links are used.

In Figures 2 and 3, the x-axis represents the number
of iterations of the bi-level program. Figures 2 and 3
illustrate the estimated mean and standard deviation
of total demand in each iteration for the MLOD and
LSOD methods, respectively. Each series represents
an initial demand scenario. Both figures show that the
estimated results converge to the simulated ones within
three iterations. This indicates the model’s robust
performance against biased initial estimates and
demonstrates the efficiency in arriving at convergence.
The estimated results of the first iteration in both
figures are very different from the simulated ones. This
is because the link proportions of the first iteration are
obtained based on the initial demand scenario specified.
The initial estimates in scenarios 1 and 2 are very biased,
and as a result, the first iteration results are inaccurate.
Both MLOD and LSOD provide a similar estimation
of E(T) that is approximately equal to the simulated
expected total demand. Note that MLOD always
provide an overestimation in Std(T) as long as initial
estimates are biased, but this overestimation is elimi-
nated after the second or third iteration. It is, therefore,
necessary to incorporate the bi-level process to reduce
the impact of biased initial estimates, especially due
to the difficulty in obtaining the standard deviation of
demand.

Figures 4 and 5 compare the performance of the esti-
mation methods at the link level for the simulated and
analytical results. In Figure 4, the x-axis indicates the
simulated expected link flow, whereas the y-axis repre-
sents the estimated expected link flow. The estimated
link flows are analytically produced by the StrUE model
based on the total demand distribution after the conver-

gence criterion has been met. The estimated expected
link flows and the corresponding simulated expected
link flows are sorted from the smallest to the largest.
The R2 values of both methods are 0.9837 and 0.9917,
respectively, which are very close to 1, it indicates that
the estimated results closely approximate the simulated
expected link flows.

A major strength of the proposed estimation meth-
ods, which is an artefact of using the StrUE model for
traffic assignment, is the estimation of link flow varia-
tion. Since the total demand distribution is calibrated
based on day-to-day simulated link flows, it is therefore
necessary to compare the estimated standard deviation
of link flow to the simulated one. In Figure 5, the esti-
mated standard deviation of link flow is produced by the
StrUE model based on the total demand distribution
after the bi-level convergence criterion has been met.
The x-axis denotes the simulated standard deviation of
link flow, whereas the y-axis indicates the estimated
one. It is illustrated in Figure 5 that despite the fact
that the R2 value is smaller than that of the expected
link flow analysis; the R2 values of both methods still
suggest a satisfying goodness of fit. Note that if the
standard deviation of link flow is very high, the esti-
mated results may be more than 20% different from
the simulated ones. Such heteroscedasticity is due to
that the corresponding link proportions are high. How-
ever, both methods can reproduce the link flow distribu-
tion if provided an estimated total demand distribution,
which indicates its applicability to traffic assignment
model.

4.2 Model sensitivity to error in loop detector data for
the Sioux Falls network

Loop detector data is prone to error, and the error can
be far more complicated in reality, for simplicity, here
we design the systematic error and specific error as in
Equations (29)–(31) to test the model’s sensitivity. The
robustness of the proposed estimation methods with re-
spect to both error types is explored using sensitivity
analysis. The specific error indicates the significance of
the error such as the failure of loop detectors or lack of
information on a link; the latter one measures the scale
of the error, that is, which links have an error. In this
analysis, the specific error is set at 10%, 20%, and 30%
respectively, and systematic error is represented as a set
of links that have an error, which is shown in Table 3.
The impact of different systematic error and specific er-
ror is illustrated, by providing the estimated mean and
standard deviation of the total demand. Note that as
this is a sensitivity analysis, the link proportions derived
from the prior demand distribution are assumed to be
identical to the simulated ones to eliminate the effect of
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Fig. 2. (a) Estimated expected total demand of MLOD under different scenarios of initial estimation; results of 10 bi-level
iterations are presented. (b) Estimated standard deviation of the total demand of MLOD under different scenarios of initial

estimation; results of 10 bi-level iterations are presented.

biased prior estimates, that is, link proportions are fixed,
since we only focus on the impact of erroneous link flow
observations in this part.

In Figure 6, the x-axis represents the systematic er-
ror, from 0% (no link has an error) to 100% with an
increment of 20%. Each series indicates a different spe-
cific error, from 10% to 30% inflation with an increment

of 10%. The y-axis starts from the estimated expected
total demand without error. It is demonstrated that the
estimated expected total demand of both methods rises
with the increase in systematic error and specific error;
these two error categories have a moderate impact on
the estimated expected total demand in both methods.
Additionally, LSOD provides estimation closer to the
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Fig. 3. (a) Estimated expected total demand of LSOD under different scenarios of initial estimation; results of 10 bi-level
iterations are presented. (b) Estimated standard deviation of the total demand of LSOD under different scenarios of initial

estimation; results of 10 bi-level iterations are presented.

simulated one under low systematic error (20%). There-
fore, both systematic error and specific error should be
treated equally, and under low systematic error, LSOD
can potentially provide a better estimation of estimated
expected total demand.

Interestingly, in Figure 7, there is a drop of Std[T]
when the systematic error is high in the results of
MLOD. This can be explained by the nonlinearity char-
acteristics in the analytical expression of sensitivity. Be-
cause from the analytical expression in Equation (28),
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Fig. 4. (a) The estimated and simulated expected link flow
comparison of MLOD method, estimated results are

produced by the StrUE model based on estimated demand
distribution. (b) The estimated and simulated expected link

flow comparison of LSOD method, estimated results are
produced by the StrUE model based on estimated demand

distribution.

we can see it is determined by several factors includ-
ing link proportion, link flow, and the specific error.
The combined effect of these factors does not satisfy
monotonicity. In LSOD method, Std[T] monotonically
increase with systematic error and specific error, and it
provides a better estimated Std[T] under all scenarios
because of its advantage in the estimation of an overde-
termined system.

Fig. 5. (a) The estimated and simulated standard deviation of
link flow comparison of MLOD method, estimated results

are produced by the StrUE model based on estimated
demand distribution. (b) The estimated and simulated

standard deviation of link flow comparison of LSOD method,
estimated results are produced by the StrUE model based on

estimated demand distribution.

4.3 Example of a medium-scale network: the Anaheim
network

To demonstrate the proposed model’s scalability, a nu-
merical analysis is also conducted on the Anaheim net-
work, which consists of 38 zones, 416 nodes, and 914
links. The demand proportions and network properties
can be found in Bar-Gera (2012a,b). Units used in the
network are: length is in feet; free flow travel time in
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Table 3
Different systematic error and specific error

Links with error
term (systematic
error)

Total number
of samples with

error term Specific error

1-76 7,600 10%, 20%, 30%
16-76 6,100 10%, 20%, 30%
31-76 4,600 10%, 20%, 30%
46-76 3,100 10%, 20%, 30%
61-76 1,600 10%, 20%, 30%

minutes; speed in feet per minute. Parameters for BPR
function can be found in Table 4. A similar method as
in example one is used to generate the simulated link
flows, the actual expected total demand is computed by
aggregating the trip table. Figure 8 presents a map of
the Anaheim network.

Results of both methods are illustrated in Table 5;
same performance measures are depicted as in example

Fig. 6. (a) The estimated expected demand of MLOD
method under different systematic error and specific error.

(b) The estimated expected demand of LSOD method under
different systematic error and specific error.

Fig. 7. (a) The estimated standard deviation of the total
demand of MLOD method under different systematic error
and specific error. (b) The estimated standard deviation of

the total demand of LSOD method under different
systematic error and specific error.

Table 4
Parameters of BPR function

BPR function

tn (ln) = tn f [1 + 0.15 ∗ tn f ( ln
Cn

)
4
]

one. In addition, to demonstrate the computation effi-
ciency, computation time is recorded (Code is written
in MATLAB, the computer used here has the following
configurations: Cpu: Intel i7-3770 3.4G Hz quad core,
Ram size: 16 GB, Software: Windows 7 enterprise
version, note that computation time may vary depend-
ing on computer configuration, software version, and
other factors). The estimated expected total demand
of both methods is statistically indifferent to the actual
expected demand. MLOD method slightly underesti-
mates the standard deviation of total demand; although
LSOD overestimates the standard deviation of total
demand, but the relative error is rather small (relative
error is calculated by dividing absolute error by actual
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Fig. 8. The Anaheim network.

Table 5
Performance measures of the Anaheim network

Performance measures MLOD LSOD

Estimated mT 104,730 104,890
Relative error of

estimated mT

0.03% 0.19%

Estimated sT 20,304 21,433
Relative error of

estimated sT

3.03% 2.36%

R2 value of estimated and
simulated expected link
flow

0.991 0.993

R2 value of estimated and
simulated standard
deviation of link flow

0.984 0.989

Computation time 179 seconds 156 seconds
Actual demand distribution mA = 104690

and sA = 20939

value). R2 values on the link level demonstrate that the
estimated total demand distribution can reproduce a set
of link flow close to the simulated ones. Computation
time is the time of running the model till convergence
and both methods have a short computation time
(less than 3 minutes), which proves the model’s ap-
plicability on larger-scale networks. The computation
burden is mainly on the F-W algorithm of the StrUE
assignment because each iteration of the F-W algo-
rithm implements the Dijkstra’s algorithm to solve the
shortest path problem, in the worst-case scenario the
computation complexity of Dijkstra’s algorithm will
be n2, the total demand calibration process is compu-
tationally simple. MLOD takes a moderately longer
computation time, due to that some links have no flow

on it, and some link proportions may become zero
during the bi-level process. In this case, these data need
to be filtered out, which increases the computation
burden to some extent.

5 CONCLUSION

This article proposes two methods (MLOD and LSOD)
to estimate the total traffic demand distribution (trip
table) based on day-to-day observed link flows. The
model considers link flow variation when estimating
the total demand distribution and the StrUE model
accounts for the impact of demand volatility in users’
route choice decision. A bi-level programming method
is included to reduce the impact of biased initial es-
timates of the total demand distribution; both upper-
level and lower-level problems are proved to be strictly
convex. A sensitivity analysis is conducted for both
MLOD and LSOD methods. A numerical analysis is
conducted on the Sioux Falls network and Anaheim
network, results for the system level and the link level
are similar, and demonstrated the robustness of both
MLOD and LSOD methods. In general, both MLOD
and LSOD demonstrate scalability with computation ef-
ficiency while providing a satisfying estimation of to-
tal demand distribution. However, the MLOD method
requires nonzero link flow and link proportions, which
may limit its applicability in some cases.

Sensitivity analysis shows that the impact of error is
predictable. Under the proposed model the problem is
overdetermined (unlike the traditional O–D estimation
problem), that is, the number of variables to be esti-
mated is far smaller than the number of known con-
straints, therefore the lack of information on several
links will not interfere with the model’s implementation.
In addition, two consequences can be derived: (1) the
advantage of the LSOD method is that it is less sensitive
to detector error, which is due to that only the mean and
standard deviation of link flows are considered; the im-
pact of errors or outliers will be averaged and thus the
estimation tends to be less sensitive to error and (2) de-
spite different objective functions for the two proposed
methods, the estimated results without error will be sim-
ilar because in the proposed models the number of con-
straints greatly exceeds the parameters to be calibrated,
namely the total demand distribution.

Finally, it should be noted that the assumption of
fixed O–D demand proportions may limit the model
applicability. Therefore, one future research effort will
be the generalization of the proposed model, especially
on estimating O–D demand independently for each O–
D pair. This requires extending the strategic user equi-
librium for the case of independently distributed O–D
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demands; the key contribution will be to account for
demand volatility in the assignment model while con-
sidering observed link flow variation in O–D demand
estimation. This article already provides an insight in
light of this. Also, it is valuable to investigate the use of
the covariance of loop counts. This can potentially pro-
vide much more information than only the link flow dis-
tribution. Additionally, dynamic traffic assignment may
be integrated into the proposed model. Generally, since
the OD estimation problem is a combination of a statis-
tical optimization model and a traffic assignment model,
an improvement in either process warrants further
research.
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