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Abstract: This article proposes an extension of the
strategic user equilibrium proposed by Waller and
colleagues and Dixit and colleagues. The proposed
model relaxes the assumption of proportional Origin-
Destination (O-D) demand, as it accounts for users’
strategic link choice under independently distributed O-
D demands. The convexity of the mathematical formu-
lation is proved when each O-D demand is assumed to
follow a Poisson distribution independently; link flow
distributions and users’ strategic link choice are also
proved to be unique. Network performance measures are
given analytically. A numerical analysis is conducted on
the Sioux Falls network. A Monte Carlo method is used
to simulate network performance measures, which are
then compared to the results computed from the analyti-
cal expression. It is illustrated that the model is capable of
accounting for demand volatility while maintaining com-
putation efficiency.

1 INTRODUCTION AND BACKGROUNDS

Realism and computational complexity are both critical
factors in transportation planning models and must be
equally considered to determine a model’s practical
applicability. A major complication in transportation
∗To whom correspondence should be addressed. Email: s.waller@
unsw.edu.au.

modeling is the ability to properly account for the in-
herent uncertainties such as demand (Axhausen et al.,
2002; Richardson, 2003; Bellei et al., 2006; Stopher
et al., 2008; Kim et al., 2009), capacity (Brilon et al.,
2005; Wu et al., 2010), and connectivity (Iida and Wak-
abayashi, 1989; Bell and Iida, 1997). Furthermore, as
has been noted, uncertainty surrounding these variables
directly impacts route choice behavior (Uchida and
Iida, 1993; Abdel-Aty et al., 1995; Lam and Small,
2001; Brownstone et al., 2003; de Palma and Picard,
2005). Researchers have focused on the stochastic
user equilibrium to account for the uncertainties in a
network (Watling, 2002; Nakayama and Takayama,
2003; Meng and Wang, 2008; Bekhor et al., 2009;
Sumalee et al., 2011), which requires path enumeration
for all Origin-Destination (O-D) pairs. However, little
attention has been paid to the user equilibrium that
can account for demand volatility while maintaining
the computation efficiency. It is, therefore, necessary
to incorporate these stochastic elements into models
to ensure robust planning capabilities but to do so in
a manner that maintains computational tractability. In
this section, the review covers the following topics: (1)
demand variability and its impact, (2) a brief introduc-
tion to the strategic user equilibrium, (3) reliability in
transportation, and (4) the maximum entropy method
in static user equilibrium.
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Improper consideration of demand variability in
planning models can result in gross underestimation of
travel time (Waller et al., 2001). Numerous research
efforts have focused on the impact of day-to-day
stochasticity regarding demand through specific model
variations. For example, Clark and Watling (2005) pro-
posed an assignment model with stochastic demand to
determine the impact on variance in total system travel
time (TSTT). Additionally, Lo and Tung (2003) con-
sidered stochastic capacity and proposed a probabilistic
user equilibrium. Castillo et al. (2013) further expanded
the probabilistic user equilibrium model under capacity
uncertainty. Their model can be solved without path
enumeration and avoided to use the central limit theo-
rem. The demand volatility can be modeled as various
statistical distributions such as Poisson distribution
(Bell, 1991; Watling, 2002; Hazelton, 2003), log-normal
distribution (Zhou and Chen, 2008; Kuang and Huang,
2013), normal distribution (Shao et al., 2006b), or bi-
nomial distribution (Nakayama and Takayama, 2003).
Also, there have been many researches to account for
demand uncertainty in the network design problem
(NDP) perspective (Sumalee et al., 2006; Ukkusuri
et al., 2007; Gardner et al., 2008; Sharma et al., 2009;
Ukkusuri and Patil, 2009; Yin et al., 2009; Chow and
Regan, 2011). The concept of considering the strategic
choice in a user equilibrium context was proposed
by Nguyen and Pallottino (1989), specifically in the
context of transit assignment. This notion was later
expanded in the dynamic traffic assignment (DTA)
formulation (Hamdouch et al., 2004). Sumalee et al.
(2009) proposed a new model for demand and capacity
uncertainty where users’ strategic choices are obtained
via a transformation of cumulative prospect theory.
Dixit et al. (2013) proposed a strategic user equilibrium
under trip variability, which was further expanded
in the linear programming formulation for DTA, by
dividing it into strategic stage and realized demand
stage (Waller et al., 2013); the link flow will therefore
fluctuate corresponding to realized demand.

This article is an extension of the user equilibrium un-
der trip variability proposed by Dixit et al. (2013), the
assumption of fixed demand proportion in the original
formulation limits the applicability of the model. This
article instead proposes a generalization of the strate-
gic user equilibrium; here it is assumed that each O-D
demand is independently distributed. The equilibrium
assignment problem is to find the link flow distribu-
tions that satisfy the user equilibrium criteria (Wardrop,
1952). The equilibrium in this article is a situation where
users equilibrate to minimize their expected travel cost
based on the demand distribution, and the expected
travel cost is less than the cost of any unused paths.
The model is named “the strategic user equilibrium,”

because the model assumes that users make their route
choice strategy while knowing the day-to-day demand
volatility (e.g., demand is different on each Monday of
a week and is also volatile in each day of week), and
they tend to be “sticky” to this strategy, that is, their
route choice strategy remains fixed regardless of the
specific day-to-day realized demand, thus the prediction
of link flow will likely vary with the realized demand. As
a consequence, disequilibrium may be observed every
day, however, the expected link flow will be in the state
of equilibrium. Watling and Hazelton (2003) provide
an in-depth discussion on the definition of equilibrium,
and also identify the existence of disequilibrium due to
the underlying variations such as demand. This model
therefore captures the demand uncertainty and its im-
pact on the travel time reliability, while maintaining the
computation tractability and simplicity within the static
user equilibrium.

It is due to these uncertainties in the network that
has led to the concerns with ensuring reliability. In part,
this has come about due to the finding that road users
tend to value reliability at about the same magnitude
as delays (Abdel-Aty et al., 1995; Bates et al., 2001;
Brownstone et al., 2003; Asensio and Matas, 2008; Dixit
et al., 2013; Uchida, 2015), hence the impact of travel
time variation should not be neglected. The reliability
of travel time may be affected by capacity degradation,
for example, Lo et al. (2006) extended the user equi-
librium to a reliability-based user equilibrium (RUE)
to account for travel time reliability by adding a safety
margin in the travel time budget. The RUE was further
expanded to incorporate multimodal transport (Shao
et al., 2006b; Fu et al., 2014), travelers’ perception er-
rors (Clark and Watling, 2005; Shao et al., 2006b), and
network uncertainties (Shao et al., 2006b; Zhou and
Chen, 2008). Furthermore, extensive previous research
has considered travel time reliability as a result of path
flow correlation (Clark and Watling, 2005; Lam et al.,
2008; Shao et al., 2013), where a priori information on
path flows and path enumeration is required, which
may be computationally complicated. Under the frame-
work, the correlation between links is considered hence
path travel time is nonadditive (Fan et al., 2005; Dong
and Mahmassani, 2009). Path travel time can be de-
rived from link travel time covariance matrix (Sen et al.,
2001; Xing and Zhou, 2011; Shahabi et al., 2013), tempo-
ral and spatial correlations (Miller-Hooks and Mahmas-
sani, 2003; Gao and Chabini, 2006), or simulation-based
approaches (Ji et al., 2011; Huang and Gao, 2012; Zock-
aie et al., 2013; Zockaie et al., 2014). Some research
also focuses on the penalties due to late arrival and
the corresponding route choice (Watling, 2006; Chen
and Zhou, 2010). Generally, the stochastic variations in
transportation systems can be attributed to variations
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in demand, capacity, or driving behavior (Shao et al.,
2006a; Siu and Lo, 2008; Van Lint et al., 2008), which
variation is the dominant source of travel time varia-
tion is still an open question. This article aims to ac-
count for the demand uncertainty and travel time vari-
ation caused by it. The risk of variation of travel de-
mand and its effects on route choice are explained by
Uchida and Iida (1993), who developed a new assign-
ment model to consider the impact of variation in travel
time. It should also be noted that the impact of not con-
sidering these uncertainties leads to significant biases
and errors (Duthie et al., 2011). Hence, it is important to
incorporate the critical realities of demand uncertainties
in our transportation models for travel behavior, so that
consistent decisions can be made based on cost-benefit
analysis associated to improving reliability by affecting
variations in demand. In this article, we account for the
link travel time reliability as a variable caused by de-
mand uncertainty and formulate the strategic user equi-
librium as a convex optimization problem, which can be
efficiently solved by some numerical methods such as
the widely used Frank-Wolfe (F-W) algorithm.

The link flows are uniquely defined under the static
user equilibrium framework originally formulated by
Beckmann’s transformation (Beckmann et al., 1956),
however, multiple path flow solutions are possible de-
pending on the model assumptions and methodolo-
gies (Larsson et al., 2001). Analyses based on an ar-
bitrary choice among the infinite number of possible
route flow solutions could cause inconsistencies in trans-
portation planning models such as O-D matrix estima-
tion, emission analysis, and many more. Rossi first sug-
gested that the entropy-maximizing pattern is the most
likely route flow pattern; the implication is to split flows
evenly across all user equilibrium (UE) paths (Rossi
et al., 1989). Later, the stability and continuity of this
approach are theoretically proved (Lu and Nie, 2010).
However, the scalability of this approach remains an is-
sue due to that the set of UE paths needs to be enu-
merated. Janson (1993) provided a link-based problem
which is equivalent to the maximum entropy approach,
and proposed a modified F-W algorithm for the im-
plementation of the model. However, the mathemati-
cal proof of its equivalency to the original maximum
entropy approach is pointed out to be inconsistent by
Akamatsu (1997). The efficiency of the maximum en-
tropy approach was later improved in various ways:
Bar-Gera applied the condition of proportionality (Bar-
Gera and Boyce, 1999; Bar-Gera, 2010) and found an
approximate set of UE paths (Bar-Gera, 2006). Some
dual methods are exploited to find the most likely path
flows (Bell and Iida, 1997; Larsson et al., 2001), in ad-
dition, Kumar and Peeta (2015) proposed an entropy
weighted average method to minimize the expected Eu-

clidean distance from all other path flow solution vec-
tors of the static user equilibrium. However, little at-
tention has been paid to these two aspects: first, most
of the methods rely on Stirling’s approximation to
convert the entropy into a continuous function, and
is subjected to the limitations of this approximation
(Schrödinger, 1957); second, the path flow is treated as
a deterministic variable, however, it is possible to define
the entropy of a probability distribution in information
theory and to interpret this as a measure of uncertainty
associated with that distribution. The maximum entropy
of probability distribution method in this model has ad-
dressed both issues by considering the entropy of path
flow distributions, and can eventually provide users’ O-
D specific link choices, which will be referred to as the
strategic link choice in this article.

The article is organized as follows. Section 2 presents
the mathematical model. The link flow distribution is
proved to be unique under this framework, which is
extremely useful for transport planning and policies.
Users’ strategic link choice is also proved to be unique
under the further assumption of maximum entropy,
which provides the possibility of applying this user equi-
librium in many other transportation models such as O-
D trip matrix estimation, environmental impact anal-
ysis and fuel consumption analysis. The performance
measures of a network are analytically derived with re-
spect to the expected link flow; consequently, the impact
of demand variability can be computed directly from
the mathematical expression. An implementation algo-
rithm is also demonstrated. In Section 3, the numeri-
cal analysis demonstrates that these analytically derived
performance measures are closely approximated to the
simulated results, so the model captures the demand
volatility while maintaining the simplicity and tractabil-
ity of traditional deterministic traffic equilibrium meth-
ods. The importance of incorporating uncertainty in
maximum entropy method is presented. Some discus-
sions of model limitations and possible future research
are presented in Section 4.

The highlights of this article include:

(1) It accounts for demand uncertainty in users’ rout-
ing mechanism, and its direct impact on link flow
and link travel time variation.

(2) It introduces the maximum entropy of a random
variable in the assignment model, instead of a de-
terministic variable in the majority of the litera-
ture.

(3) Network performance measures are provided an-
alytically, which enhances computation efficiency.

(4) The uniqueness of link flow distribution and
strategic link choice are guaranteed, which ensures
its applicability in transportation planning process.
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Table 1
Summary of notations

N Link (index) set.
M O-D pair (index) set.
K Path set.
ln Flow variable for link n.
tn() The function of travel time on link n.
tn The expected travel time on link n.
tn f The free flow travel time on link n.
Cn The capacity on link n.
pm

k Users’ path choice on path k, connecting O-D
pair m.

dm
n Users’ strategic link choice, which represents the

proportion of O-D pair demand Tm on link n.
hm

k The flow on path k, connecting O-D pair m.
Mθ

n The θ th raw moment of the link flow distribution
on link n.

E() The expectation of a variable.
var() The variance of a variable.
G( ) The probability density function of a variable.
qm Proportion of total trips that are between O-D

pair m; 1 = ∑
∀m qm .

T m Demand variable for O-D pair m.
λn The parameter of the Poisson distribution for

flow on link n[λ] = [λ1, . . . , λn]T .
sm The parameter of the Poisson distribution for

O-D pair demand T m .
g(ln ; λn) The probability mass function of a Poisson

distributed variable ln , defined by the
parameter λn .

δm
n,k Link-path indicator variable. δm

n,k ={
1 i f link n is on path k between OD pair m
0 otherwise

Km The path set for O-D pair m.
K U E

m The shortest path set for O-D pair m.
S() The entropy of a variable.
α The parameter of the BPR function.
∇z() The gradient of an objective function z().

(5) Users are assumed to stick to their route choice
regardless of day-to-day demand volatility, which
mimics the “sticky” behavior of travelers, espe-
cially commuters.

(6) A solution algorithm is proposed to compute the
link flow parameter and the strategic link choice,
without requiring path enumeration.

2 PROBLEM FORMULATION

This section defines the mathematical concept of the
strategic user equilibrium model (referred to as StrUE
in this article). Table 1 shows a summary of notations
used in the article.

2.1 Model formulation

This model is an extension of the strategic user equilib-
rium proposed by Dixit et al. (2013) and Waller et al.
(2013), which was formulated as

min z([x]) =
∑
n∈N

∞∫
0

xn∫
0

tn (yT) G(T ) dydT (1)

subject to ∑
k

pm
k = 1, ∀m ∈ M (2)

pm
k ≥ 0, ∀m ∈ M, k ∈ Km (3)

xn =
∑

m

∑
k

pm
k δm

n,kqm , ∀n ∈ N (4)

In this formulation, users’ strategic choice is denoted
as the link proportions xn , that is, the link flow divided
by the total demand T . The [x] represents a vector of all
the link proportions and y is a dummy variable for inte-
gration. Each O-D demand is the fixed demand propor-
tion qm multiplied by the total demand T , that is, each
O-D demand is proportional to the total demand, and
the proportions are constants. This implies that all O-
D demands are perfectly correlated, that is, each O-D
demand always inflates or deflates by the same percent-
age. The total demand is assumed to follow a certain
distribution. The objective function is the sum of the in-
tegrals of the expected value of the link cost functions;
the link proportions are proved to be unique under the
assumption of fixed demand proportions. Note that the
link proportion does not change in line with the real-
ized total demand day-to-day, while link flow will vary
every day corresponding to the realized total demand.
Further explanation and details can be found in Dixit
et al. (2013).

However, the assumption of fixed demand proportion
limits the applicability of the model, therefore, this arti-
cle proposes a generalization of the strategic user equi-
librium, and here it is assumed that each O-D demand is
independently distributed. The equilibrium assignment
problem is to find the link flow distributions that sat-
isfy the user equilibrium (Wardrop, 1952) criterion. Due
to the introduction of demand volatility and expected
travel time, in this article, it is defined as:

Definition 1. The strategic user equilibrium is defined
such that the expected travel costs are equal on all used
paths, and this commonly expected travel time is less than
the actual expected travel time on any unused path. In
other words, given user equilibrium expected path cost,
any deviation from the existing expected path flows can-
not reduce the expected path cost.
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Based on Definition 1, the equilibrium condition can
be formulated by the following link-based mathematical
program:

min z ([l]) =
∑
n∈N

∫ ln

0

∫ +∞

0
tn (w) G (ln) dlndw (5)

subject to ∑
k∈Km

pm
k = 1 ∀m ∈ M (6)

pm
k ≥ 0 ∀m ∈ M, k ∈ Km (7)

ln =
∑
m∈M

∑
k∈Km

pm
k δm

n,k T m ∀n ∈ N (8)

where w is a dummy integration variable which repre-
sents link flow. In this formulation, the objective func-
tion is the sum of the integrals of the expected value of
the link cost functions from 0 to expected link flow; its
equivalence to the variational inequality for user equi-
librium will be proved later. The behavioral implication
and its equivalence of this formulation to user equilib-
rium will be shown in this section. Equation (6) rep-
resents a set of flow conservation constraints, that is,
the sum of path flow proportions for every O-D pair m
should be equal to 1, which preserves the trips out of
and in each O-D centroid. Equation (7) indicates that
the path flow must be non-negative. Equation (8) indi-
cates the link flow in terms of path flows and O-D de-
mand. The topology of link, path and O-D pairs of the
network is represented by Equation (8).

As δm
n,k is dependent only on the network topology

and is a constant,
∑

k∈Km
pm

k δm
n,k can be integrated into

one term dm
n which is defined here as the users’ strate-

gic link choice. It represents the proportion of O-D pair
demand Tm traversing link n, the strategic link choice
indicates users’ link choice disaggregated by O-D pairs,
which is extremely important in many transportation
models such as O-D matrix estimation, emission anal-
ysis, and NDP. As aforementioned in this article, the
users will stick to this strategic link choice once it is
made. The strategic link choice will be discussed further
later in this article.

dm
n =

∑
k∈Km

pm
k δm

n,k ∀m ∈ M, ∀n ∈ N (9)

Under the proposed framework, two further statisti-
cal assumptions are made here.

A1. The actual O-D demand varies day-to-day and
follows a Poisson distribution independent of each
other (Bell, 1991; Hazelton, 2003; Clark and Watling,
2005; Appiah, 2009; Bera and Rao, 2011) defined by

the probability mass function: T m ∼ g(T m ; sm), where
sm > 0. This assumption will be discussed later in the
article.

A2. Conditional on the realized demand on any given
day, each user (driver) is assumed to choose inde-
pendently between the alternative paths with a fixed
strategic path choice pm

k .

Before proceeding to the mathematical proof, some
clarifications are made here.

Note that the uniqueness and equivalence conditions
are guaranteed by the assumption of Poisson distributed
demands, and the non-negativity of Poisson distribution
is consistent with real-world positive demands. The ac-
tual demand distribution may vary depending on net-
work type, time frame, and many other factors; which
distribution best fits the actual demand is still an open
question. In some cases when demand is considered to
not follow the Poisson distribution, other distributions
are also applicable as long as they are non-negative and
preserve the uniqueness and equivalence conditions. If
the depicted distribution is not supported on the pos-
itive semi-infinite interval, the truncated distribution
techniques may be applied, such as the truncated nor-
mal distribution, which is defined on the domain of pos-
itive real numbers.

Each O-D demand follows a Poisson distribution;
however, each realized demand T ∗

m is a constant, that
is, on that day, there are T ∗

m travelers between O-D pair
m. Each of the T ∗

m travelers will choose between the k al-
ternative paths, each with a probability pm

k , note that the
strategic path choice should be treated as a probability
instead of a constant. One possible misunderstanding is
to treat the strategic path choice as a constant; in this
case, the path flow variable would become hm

k = pm
k T m ,

namely, a constant multiplied by a Poisson variable. As
0 ≤ pm

k ≤ 1, the path flow would not follow a Poisson
distribution, which is inconsistent with our assumption.

Proposition 1. Given assumptions 1 and 2, the
unconditional path flow hm

k follows a Poisson
distribution g(hm

k ; pm
k sm) independently. The uncon-

ditional link flow ln also follows a Poisson distribution.

Proof. Assumptions 1 and 2 together imply that for
each m ∈ M , conditional on a realized demand T ∗

m , each
user has a probability of choosing path k. By defini-
tion, the probability of observing a set of path flow
[hm

1
∗, hm

2
∗, . . . , hm

k
∗|m ∈ M] has a multinomial distribu-

tion

P
(
hm

1 = hm
1

∗, hm
2 = hm

2
∗ . . . hm

k = hm
k

∗ ∣∣T ∗
m

)
= T ∗

m!
hm

1
∗!hm

2
∗! . . . hm

k
∗!

(pm
1 )hm

1
∗
(pm

2 )hm
2

∗
(pm

k )hm
k

∗

∀m ∈ M, k ∈ Km

(10)
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where
∑k

1 hm∗
k = T ∗

m . In StrUE, we are more interested
in the unconditional flows; here the path flow condi-
tional on Tm = T ∗

m has a multinomial distribution, and
Tm follows a Poisson distribution, then from the rela-
tionship of unconditional and conditional probability
we obtain

P{( hm
1 = hm

1
∗
, hm

2 = hm
2

∗ . . . hm
k = hm

k
∗ )

∩
(

k∑
1

hm
k

∗ = T ∗
m

)
= P ( hm

1 = hm
1

∗
, hm

2 = hm
2

∗

× . . . hm
k = hm

k
∗ ∣∣T ∗

m =
k∑
1

hm
k

∗
)

∗P

(
T ∗

m =
k∑
1

hm
k

∗
)

=
(∑k

1 hm
k

∗
)

!

hm
1

∗!hm
2

∗! . . . hm
k

∗!

×(pm
1 )hm

1
∗
(pm

2 )hm
2

∗
(pm

k )hm
k

∗ e−sm s
∑k

1 hm
k

∗
m(∑k

1 hm
k

∗
)

!
,

∀m ∈ M, k ∈ Km (11)

Because
∑

k∈Km
pm

k = 1, the above equation can be
rearranged as(∑k

1 hm
k

∗
)

!

hm
1

∗!hm
2

∗! . . . hm
k

∗!
(pm

1 )hm
1

∗
(pm

2 )hm
2

∗
(pm

k )hm
k

∗ ∗ e−sm s
∑k

1 hm
k

∗
m(∑k

1 hm
k

∗
)

!
=

e−pm
1 sm
(

pm
1 sm

)hm
1

∗

hm
1

∗!
∗ e−pm

2 sm
(

pm
2 sm

)hm
2

∗

hm
2

∗!
. . .

e−pm
k sm (pm

k sm)hm
k

∗

hm
k

∗!

=
k∏
1

g (hm
k ; pm

k sm) ∀m ∈ M, k ∈ Km (12)

Q.E.D.
Note that the proof of Proposition 1 is also known

as “thinning of a Poisson process,” a general and
more detailed proof can be found in Corollary 9.17 in
Boucherie and Serfozo (2001) or in Clark and Watling
(2005) and Castillo et al. (2014). The right-hand side
of Equation (12) is a product of a series of Poisson
variables hm

k , whose parameters are pm
k sm . So we have

proved that each unconditional path flow follows an
independent Poisson distribution; and note that the
conclusion of independent path flow does not violate
the flow conservation constraints as the path flow
conditional on a realized demand still must sum up to
each realized demand. From Equation (8), we have

ln =
∑
m∈M

∑
k∈Km

pm
k δm

n,k T m

=
∑
m∈M

∑
k∈Km

hm
k δm

n,k , ∀n ∈ N (13)

The link-path indicator variable can only be either 0
or 1; therefore, link flow is the sum of several indepen-
dent Poisson distributions, which also follows a Poisson
distribution (Lehmann and Romano, 2006). The param-
eter of link flow distribution is then defined by the equa-
tions below

ln ∼ g (λn) (14)
λn =

∑
m∈M

∑
k∈Km

pm
k δm

n,ksm

=
∑
m∈M

∑
k∈Km

E (hm
k ) δm

n,k ∀n ∈ N (15)

Corollary 1. The flow conservation constraint also holds
for expected path flow and variance of path flow.

Proof. Each O-D demand follows a Poisson distribu-
tion with parameter sm > 0, which is the expected O-D
demand. Multiply both sides of the flow conservation
constraints by the expected demand for O-D pair m, and
as the summation is taken over k instead of m, Equation
(6) can be rewritten as∑

k∈Km

pm
k = 1 →

∑
k∈Km

pm
k ∗ sm = 1 ∗ sm

=
∑

k∈Km

E (hm
k ) ,∀m ∈ M (16)

Also, if we look at the variance of path flows, accord-
ing to Proposition 1 and based on the basic property of
variance, we have

V ar (Tm) = V ar

⎛⎝∑
k∈Km

hm
k

⎞⎠
=
∑

k∈Km

V ar( hm
k ),∀m ∈ M (17)

Proposition 2. The parameters of the link flow distribu-
tions are unique under A1 and A2. That is, there exists a
unique solution to the mathematical program defined in
Equations (5) to (8).

Use BPR (The Bureau of Public Roads) function as
the travel cost function

tn (ln) = tn f

(
1 + α

(
ln

Cn

)4
)

∀n ∈ N (18)

Note that the travel cost is positive, and due to
the equilibrium conditions that all used paths have
minimum travel costs, a path with cycles will not be
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considered as the user equilibrium paths. Because the
link flow variable ln follows the discrete Poisson distri-
bution with a probability mass function g(ln ; λn) which
is defined on positive integers, based on the aforemen-
tioned proposition and corollary, the objective function
of StrUE in Equations (5) to (8) can then be rewritten
as

min z ([λ])

=
∑
n∈N

λn∫
0

∞∑
ln=0

[
tn f

(
1 + α

(
ln

Cn

)4
)]

g (ln ; λn) dλn

=
∑
n∈N

λn∫
0

(
tn f + αtn f

(
1

Cn

)4

M4
n

)
dλn (19)

subject to∑
k∈Km

E (hm
k ) = sm ∀m ∈ M (20)

E (hm
k ) ≥ 0 ∀m ∈ M, k ∈ Km (21)

λn =
∑
m∈M

∑
k∈Km

E(hm
k )δm

n,k ∀n ∈ N (22)

where M4
n is the fourth raw moment of the correspond-

ing Poisson distribution for link n

M4
n = λn

(
1 + 7λn + 6λ2

n + λ3
n

)
,∀n ∈ N (23)

The gradient of the objective function is

∇z ([λ]) =

⎡⎢⎢⎢⎢⎢⎢⎣

∂z ([λ])
∂λ1

...

∂z ([λ])
∂λn

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞∑
l1=0

[
t1 f

(
1 + α

(
l1

C1

)4
)]

g (l1; λ1) dλ1

...

∞∑
ln=0

[
tn f

(
1 + α

(
ln

Cn

)4
)]

g (ln ; λn) dλn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
t1 f + αt1 f

(
1

C1

)4

M4
1

)
...(

tn f + αtn f

(
1

Cn

)4

M4
n

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎣
t1

...

tn

⎤⎥⎥⎦

(24)

where tn is the expected travel time on link n. Because
the expected travel time depends only on the link flow
distribution

∂z ([λ])
∂λaλb

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂

(
tn f + αtn f

(
1

Cn

)4
M4

b

)
∂λa

, if a = b

0 if a = b

∀a, b ∈ N (25)

The Hessian matrix of the objective function can be
expressed as:

Hessian

=

⎡⎢⎢⎢⎣
1 + 14λ1 + 18λ2

1 + 4λ3
1 . . . 0

...
. . .

...

0 . . . 1 + 14λa + 18λ2
a + 4λ3

a

⎤⎥⎥⎥⎦
a ∈ N (26)

As λa > 0, the Hessian matrix is positive definite, in
addition, all constraints are linear. Therefore, the ob-
jective function is strictly convex and has a unique mini-
mum with respect to link flow distribution. The unique-
ness is extremely important to ensure stability of the
project rankings in planning models. Note that as the
θ th raw moment of a Poisson distribution can always be
expressed in a polynomial form, other travel cost func-
tions may also be used as long as they are monotonically
increasing with respect to link flow. For example, chang-
ing the exponent parameter for BPR function to two or
there clearly does not change the positive-definiteness
of the Hessian matrix of the objective function.

Q.E.D.

2.2 Proof of equivalency

In this part, we will demonstrate that the mathematical
formulation is equivalent to the notion of strategic user
equilibrium as proposed by Definition 1.

Theorem 1. The mathematical program defined in Equa-
tions (19) to (22) is equivalent to the strategic user equi-
librium condition defined in Definition 1.

Proof. For convenience, here we number the paths
distinctly and consecutively by dropping the subscripts
k and m and replacing them with e, that is, there are
e = ∑

m∈M

∑
k∈Km

k (i.e., the sum of all possible paths
across all O-D pairs) distinct paths for the network. Let
H denote the path flow vector and H̄ represent the
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corresponding expected flow vector. Equation (22) can
then be written in the following matrix form:

H =

⎡⎢⎢⎣
h1

...

he

⎤⎥⎥⎦ , H̄ =

⎡⎢⎢⎣
E (h1)

...

E (he)

⎤⎥⎥⎦ ,

A =

⎡⎢⎢⎣
a11 . . . a1e

...
. . .

...

an1 . . . ane

⎤⎥⎥⎦ → [λ] = A ∗ H̄

(27)

where [λ] is a vector of λn(n ∈ N), let [λ∗] be the vec-
tor of a local minimum, A is the link-path incidence
matrix which represents whether link n is included in
path e or not, the entry of A is either 0 or 1. Equa-
tion (27) indicates the constraints with respect to λn ;
clearly, the constraints are convex with respect to λn .
The convexity of the constraints implies that another
vector [ λ̃] = q[λ] + (1 − q)[λ∗] is also a feasible set
for 0 ≤ q ≤ 1. Thus,

[λ̃] − [λ∗] = q [λ] + (1 − q) [λ∗] − [λ∗]

= q ([λ] − [λ∗])
(28)

This indicates a step move in a feasible direction. For
a q that is small enough, the convexity of the objective
function tells us that

q ([λ] − [λ∗]) ∇z ([λ∗]) ≥ 0 (29)

where ∇z([λ∗]) is the gradient of the objective function.
Dividing both sides of Equation (29) by q yields

([λ] − [λ∗]) ∇z ([λ∗]) ≥ 0 (30)

As shown above in the calculation in Equation (24),
the gradient of the objective function is a vector of the
expected travel cost on link n, and the expected cost of
any path e consists of the sum of the expected costs of
the constituent links

O∗ =

⎡⎢⎢⎣
o1

...

oe

⎤⎥⎥⎦ = AT ∗

⎡⎢⎢⎣
t1

...

tn

⎤⎥⎥⎦ (31)

where O∗ represents the expected path cost vector.
Therefore, from Equations (24), (30), and (31), we have
shown that

(
H̄ − H̄∗)T

O∗ = (
H̄ − H̄∗)T ∗ AT ∗

⎡⎢⎢⎣
t1

...

tn

⎤⎥⎥⎦

= ([λ] − [λ∗])T ∗

⎡⎢⎢⎣
t1

...

tn

⎤⎥⎥⎦ ≥ 0

(32)

Therefore, the formulation is equivalent to: given
user equilibrium expected path cost, any deviation from
the existing expected path flows cannot reduce the ex-
pected path cost. Another way to say that the StrUE
is reached when the expected travel times are equal on
all used paths, and this common expected travel time is
less than the actual expected travel time on any unused
path.

The uniqueness of link flow is extremely important to
ensure the model’s applicability in transportation plan-
ning process. Note that in the proposed framework,
other distributions of O-D demand may also be as-
sumed, provided that the gradient of the equivalent op-
timization objective function represents the expected
travel cost on each path, which is necessary to guar-
antee the variational inequality of equilibrium. In ad-
dition, the Jacobian of the link cost functions with re-
spect to link flow must be positive definite to assure the
uniqueness of expected link flow. That is, the cost func-
tion should be monotonically increasing in terms of link
flow, and the dominant effect on the cost of a link should
be the flow. The convexity of constraints in the mathe-
matical program is sufficient and necessary for the exis-
tence of equilibrium. A further discussion of the varia-
tional inequality and the equivalence conditions can be
found in Cascetta (2009), which also explains another
way to model variable demand.

2.3 Analytical expression

One of the strengths of this model is that we have tied
back the demand uncertainty to the mathematical ex-
pression, which can substantially decrease computation
steps needed. Note that the link flow parameter λn and
users’ strategic link choice are derived from the numer-
ical method and are treated invariant. They are substi-
tuted into those mathematical expressions to calculate
those performance measures.

The expected travel time on a link is given by

tn = E[tn (λn) ]
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=
∞∑

ln=0

[
tn f

(
1 + α

(
ln

Cn

)4
)]

g (ln ; λn) dλn

= tn f + αtn f

(
1

Cn

)4

M4
n ,∀n ∈ N (33)

The variance of travel time on a link is given by

var [tn (λn)] = E
[
t2
n (λn)

]− E[tn (λn)]2

= α2 t2
n f

(
1
C

)8 [
M8

n − (M4
n

)2]
,∀n ∈ N (34)

Mθ
n =

θ∑
i=1

λi
n

{
θ

i

}
,∀n ∈ N (35)

where the braces in Equation (35) denote the Stir-
ling’s number of the second kind. Therefore, the raw
moment of link flow is monotonically increasing with
respect to λn , therefore, it can be characterized that
the variance of travel time increases as the expected
travel time increases, which is a commonly observed
phenomenon on transportation networks around the
world (Van Lint et al., 2008; National Research Council,
2013).

Once we have λn , the StrUE model can also estimate
the TSTT analytically, which are shown in the equations
below. Some characteristics of these expressions will be
discussed in Section 3.

E (TSTT) =∑
n∈N

∞∑
ln= 0

[
lntn f

(
1 + α

(
ln

Cn

)4
)]

g (ln ; λn) dλn

=
∑
n∈N

tn f M1
n + αtn f

(
1

Cn

)4

M5
n

(36)

var (TSTT) = E[(TSTT − E [TSTT])2] = E
(
T ST T 2)

−E2 (TSTT) =
∑
n∈N

t2
n f

[
M2

n − (M1
n

)2]

+ α2t2
n f

(
1

Cn

)8 [
M10

n − (M5
n

)2]
+ 2αt2

n f

(
1

Cn

)4 [
M6

n − M1
n M5

n

]
(37)

2.4 The most likely strategic link choice

Under the strategic user equilibrium, the link flows are
uniquely defined, however, the strategic link choice ma-
trix (sometimes referred to as the assignment map or
O-D-specific link choice in other papers) is not unique.

That is, there might be multiple sets of strategic link
choice that can produce the same link flows. Although
if we run the F-W algorithm and store all the tem-
porary shortest paths for each iteration, the F-W al-
gorithm may provide different link choice each time,
while producing the same link flows. The strategic link
choice is extremely useful especially in transportation
planning models such as O-D estimation problem, emis-
sion analysis, and so forth. In these cases, only hav-
ing the aggregated link flows is not sufficient, hence a
uniquely determined strategic link choice is required
to ensure the stability and applicability of this model.
To address this issue, some researchers have proposed
the following maximum entropy optimization problem
to determine the most likely path flows (Rossi et al.,
1989; Janson, 1993; Larsson et al., 2001) (which can pro-
vide strategic link choice subsequently), where entropy
is defined as the number of possible route choice de-
cisions made by individual travelers, and path flow and
O-D demand are treated as deterministic variables, nor-
mally only the expected path flow and O-D demand are
considered

Ssystem =
∏

m∈M

E (Tm)!∏
k∈Km

E (hm
k )!

(38)

In principle, entropy gives the number of possible
route choice decisions made by individual travelers
within a specific route flow solution. The objective is to
maximize the entropy of the system (the sum of the en-
tropy of all shortest paths), which can be formulated as
the following equivalent mathematical program:

Max : −
∑
m∈M

∑
k∈K U E

m

E (hm
k ) ln [E (hm

k )] (39)

subject to∑
k∈K U E

m

E (hm
k ) = E (Tm) ∀m ∈ M (40)

hm
k ≥ 0 ∀m ∈ M, k ∈ K U E

m (41)

ln =
∑
m∈M

∑
k∈K U E

m

pm
k E (hm

k ) ∀ n ∈ N (42)

Note that only the shortest paths for the strategic user
equilibrium are considered; the problem is based on that
the user equilibrium is solved and the equilibrium link
flow is obtained. Solving the Lagrangian program above
shows that the most likely path flow follows the logit
assignment, where the “link cost” is the Lagrangian
multipliers corresponding to Constraint 41 (Aka-
matsu, 1996; Akamatsu, 1997). However, the above
formulation may suffer from two limitations: First,
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the transformation to the equivalent mathematical
program relies on Stirling’s approximation to convert
the entropy into a continuous function, and is subjected
to the limitations of this approximation (Schrödinger,
1957). Second, the path flow is treated as a deterministic
variable hence it neglects the volatility in O-D demand
and path flows. It is possible to define the entropy of a
probability distribution in information theory and to in-
terpret this as a measure of uncertainty associated with
that distribution. In the formulation below, we will show
that if path flow and demand volatility are considered,
the path flow will not follow the logit assignment, there-
fore, Dial’s algorithm may not be applicable under this
consideration.

Definition 2. The entropy of any path flow state (Hereby
referred to as path flow distribution) is the measure of
randomness or uncertainty of locating an individual ran-
dom network user. All possible states of this distribu-
tion are considered. The higher the number of possi-
ble states, the higher is the randomness or uncertainty
of locating an individual network user in that path flow
state.

Based on the definition, the following assumption is
made.

A.3. Under the strategic user equilibrium conditions,
users make their strategic path choice (and the
corresponding strategic link choice), to maximize the
probability distribution entropy of the system.

In the aforementioned formulation, the strategic path
choice is not uniquely defined, that is, there may be sev-
eral sets of path flows that can provide the same link
flow distributions. However, the capability of estimating
path flow uniquely may be important in various trans-
portation models. Hence, extending the notion of en-
tropy maximization method used in many previous re-
searches (Rossi et al., 1989; Akamatsu, 1997; Kumar and
Peeta, 2015), here the entropy of a random variable (in-
stead of a deterministic value) which follows a certain
statistical probability distribution is defined as (Ochs,
1976)

S (hm
k ) = −

∞∑
hm

k = 0

g (hm
k ; pm

k sm) ln g (hm
k ; pm

k sm)

∀m ∈ M, k ∈ K U E
m (43)

where hm
k is the path flow variable that follows a Poisson

distribution with parameter pm
k sm . The base of the log-

arithm is not important as long as the same one is used
consistently: change of base merely results in a rescaling
of the entropy; here the natural logarithm is used. Given
that the unconditional path flow follows a Poisson distri-

bution independently of each other, the entropy corre-
sponding to a strategic path choice pm

k is

S (hm
k ) = pm

k sm [1 − ln (pm
k sm)]

+ e−pm
k sm

∞∑
hm

k = 0

(pm
k sm)hm

k ln hm
k !

hm
k !

∀m ∈ M, k ∈ K U E
m (44)

Note that the equilibrium path set for each O-D pair
normally only contains a small number of candidate
paths, leading to a relatively large pm

k sm . According to
Evans et al. (1988), when pm

k sm > 4, the entropy func-
tion can already be well approximated by the following
equation:

S (hm
k ) ≈ 1

2
ln (2πepm

k sm) ∀m ∈ M, k ∈ K U E
m (45)

Considering all the O-D pairs, the objective is to find
a set of strategic path choice [pm

k ] to maximize the en-
tropy of the system

Max → zentropy ([pm
k ]) =

∑
m∈M

∑
k∈K U E

m

1
2

ln (2πepm
k sm) (46)

subject to ∑
k∈K U E

m

pm
k = 1, ∀m ∈ M (47)

pm
k ≥ 0, ∀k ∈ K U E

m , m ∈ M (48)

λn =
∑
m∈M

∑
k∈K U E

m

pm
k δm

n,k sm ∀n ∈ N (49)

Proposition 3. The strategic path choice [pm
k ] is unique

under the maximum entropy assumption.

Equivalently, the objective function can be trans-
formed into the following minimization problem with
the same constraints:

min → −zentropy ([pm
k ]) = −

∑
m∈M

∑
k∈K U E

m

1
2

ln (2πepm
k sm) (50)

The objective function is the sum of several con-
vex functions, and all three constraints are also con-
vex, therefore, a unique optimal solution exists. As the
strategic link choice is the sum of several correspond-
ing strategic path choices, it is also uniquely determined.
The optimal solution can be obtained by various numer-
ical methods such as the Newton’s method and the gra-
dient descent method.

2.5 Implementation algorithms of the model

Note that the identification of the equilibrium path set
is required when solving the maximum entropy problem
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above. Although this equilibrium path set is unique, it is
difficult to be obtained in practice due to computational
precision limits. Hence, an approximation method sim-
ilar to Larsson et al. (2001) is proposed here. In this
method, all paths used in the all or nothing assign-
ment procedure during the F-W algorithm are stored,
until the strategic user equilibrium is reached. Then,
the expected costs of all these paths are computed and
those paths whose expected costs are within a tolerance
threshold are saved as the approximated shortest paths,
which will be used to solve the maximum entropy prob-
lem here. The tolerance threshold is defined as a pro-
portion of the shortest path cost.

t (hm
k ) − t (hm

k
∗)

t (hm
k

∗)
≤ T ol (51)

where t(hm
k ) represents the expected cost of path k for

O-D pair m, t(hm
k

∗) represents the shortest path cost for
O-D pair m. It must be mentioned that by doing so, only
a subset of the equilibrium paths may be included, this
error may be mitigated by setting a high relative gap
(the difference between two consecutive iterations) for
the F-W algorithm. The choice of tolerance threshold
is also critical: low tolerance value may cause the opti-
mization problem to be infeasible, high tolerance value
may lead to inclusion of nonequilibrium paths. So the
choice of the tolerance threshold should be carefully
made.

The solution procedure of the model is demonstrated
below:

Solution Algorithm:

Step 1: Initialization: Load free flow [λ]0 to the net-
work, and find the free flow travel cost on each
link.

Step 2: All or Nothing Assignment: Based on the travel
cost, find a set of expected link flows [λ]1 →
min z([λ]), subject to Equations (20) and (22),
store the shortest path for each all or nothing
assignment.

Step 3: Line search: Find the step size β →
min z(β[λ]n+1 + (1 − β)[λ]n), subject to
0 ≤ β ≤ 1.

Step 4: Repeat Steps 2 and 3 until [λ]n+1−[λ]n

[λ]n+1
≤ ε, where

ε is the critical value which can be artificially
set. In this step, the strategic user equilibrium is
reached.

Step 5: Compute the expected cost of each stored path
based on the equilibrium link cost.

Step 6: If t(hm
k )−t(hm

k
∗)

t(hm
k

∗) ≤ T ol, save the path as a user
equilibrium path.

Step 7: Solve the maximum entropy optimization pro-
gram in Equations (46) to (49), a set of strate-

gic path choice [. . . , pm
k . . . ] is obtained. Vari-

ous numerical methods, such as the Newton’s
method, may be applicable here.

Step 8: Calculate the strategic link choice from the
strategic path choice.

Step 1 provides an initial feasible solution to start the
algorithm, Step 2 builds the least cost paths set and loads
corresponding traffic on these paths. In Step 3, a step
size parameter β is sought to minimize the objective
function, numerous methods are applicable here such as
the Golden section method or Bisection method. Step 4
assesses the degree of convergence by computing the
relative change in the expected link flow vector between
iterations. Step 5 and Step 6 provide the equilibrium
path set which will be used to determine their corre-
sponding strategic path choice. Step 7 solves the opti-
mization maximum entropy problem. Step 8 computes
the strategic link choice from the strategic path choice.
The F-W algorithm part can also be found in Cascetta
(2009), the main difference is that in each all or nothing
assignment iteration the shortest path will be stored in
memory to determine the equilibrium paths.

3 NUMERICAL EXAMPLES

The link flow volumes (and travel times) may differ
from the deterministic set of flows (and travel times)
when demand variability is introduced. The strength of
the proposed StrUE model is the incorporation of de-
mand uncertainty into the user’s decision-making pro-
cess; therefore, the remainder of the analysis considers
only stochastic demand conditions. Specifically, the de-
mand follows a Poisson distribution with a prescribed
parameter lambda. In the StrUE model, path propor-
tions (and the corresponding link choice probabilities)
are dependent on the demand distribution, and not any
particular demand realization.

3.1 Monte Carlo simulation

To evaluate the StrUE model under demand variability,
100 randomly selected demand scenarios for a given de-
mand distribution curve (with a prescribed Poisson pa-
rameter lambda) were generated through Monte Carlo
sampling, then for each realized demand sample, 100
sets of multinomially distributed path flows are sam-
pled based on the strategic path choices. As a result, we
have 10,000 sets of sampled path flows and 10,000 sets
of corresponding sampled link flows, which represents
the unconditional distributions of link flow. These re-
sults derived from the Monte Carlo method will be in-
dicated as simulated results, and those ones computed
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Fig. 1. The Sioux Falls network.

from the analytical equations will be indicated as es-
timated results. Based on the simulation the following
performance measures are computed.

(1) Expected total system travel time (ETSTT) and
standard deviation of total system travel time,
(StdTSTT).

(2) Expected link travel times and standard deviation
of link travel time.

(3) Expected link flow and standard deviation of link
flow.

The mathematical expression of expected travel time
on a link is given by the BPR function introduced in
Equation (33). The F-W algorithm is implemented with
the modified expected link travel time function to de-
termine the strategic choice, and the corresponding link
flow distributions, the relative gap for the F-W method
is set to 1*e−5. The following results are based on the
network depicted in Figure 1. The network has 24 nodes
and 76 links. The capacity, free flow speed, length of
each link, as well as other network attributes can be
found in Bar-Gera (2012). The BPR parameters α and
β are taken to be 0.15 and 4, respectively.

Figure 2 illustrates the probability distribution of flow
on several randomly chosen links, the x-axis denotes
the link flow and the y-axis represents the probability
of observing the corresponding link flow. In total, there
are 10,000 sets of sampled link flows which are gener-
ated from the 100 demand scenarios, these simulated
link flows are plotted as a bar figure; the black curve
represents the standard Poisson distribution with the
parameter lambda derived from the strategic user equi-
librium. It is demonstrated that the standard Poisson
distribution curve is well approximated by the simu-
lated results. This is further validated by a Chi-square
test on these four links, the corresponding p-values are
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Fig. 3. Linear regression analysis of expected link travel time.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Estimated StdTT

Si
m

ul
at

ed
 S

td
T

T

Simulated vs estimated StdTT

Rsquared=0.973

Fig. 4. Linear regression analysis of standard deviation of
link travel time.

all equal to 1, which indicates that the simulated link
flow is not significantly different from the corresponding
standard Poisson distribution. Similar performance can
be observed on other links too. Therefore, if each O-
D demand follows a Poisson distribution independently,
the corresponding unconditional link flow estimated by
the model also follows a Poisson distribution, whose pa-
rameter is determined by users’ strategic choice and de-
mand distribution.

In Figures 3 and 4, the 10,000 sets of link flows are
substituted in the BPR function to evaluate link travel
times, which provide the expected link travel times

Table 2
Network performance measures

Performance
measures

Estimated
results

Simulated
results Relative error

ETSTT 7,481,223 7,582,740 1.3%
StdTSTT 32,090.97 46,547.93 31.0%

(and respective standard deviation) for all the 76 links.
In Figure 3, the x-axis represents the analytical travel
time estimated from Equation (33) and the y-axis
represents the expected link travel time computed from
the simulated results. It is shown in Figure 3 that the
analytically estimated expected link travel time closely
approximates the simulated expected link travel times
(as evident by the R2 = 0.99).

One of the strengths of the StrUE model is its capa-
bility of estimating the link flow variation analytically.
In Figure 4, the simulated standard deviations of link
travel times are compared with the analytically derived
values from Equation (34). Similar to the expected link
travel time, a linear regression analysis is done on the es-
timated and simulated standard deviation of link travel
time on all the 76 links. The R squared value is very
close to 1 despite it is smaller than that of the expected
link travel time. Note that the simulated standard devi-
ation of link flow may deviate from the estimated ones
when the expected travel time is large due to the sample
size. Figure 4 demonstrates the model’s ability to cap-
ture variability in travel time as a consequence of de-
mand volatility.

Table 2 compares the system performance of ET-
STT and StdTSTT of the network; the estimated re-
sults are computed from Equations (36) and (37). As
demonstrated by the table, the simulated ETSTT is
very close to the estimated ETSTT, as indicated by
the relative error of just 1.3%. However, the StdTSTT
is moderately different, due to the Monte Carlo sam-
pling process: first 100 realized demands are sampled,
then 100 multinomially distributed path flows are sam-
pled based on each realized demand, so the path flows
are actually correlated in each realized TSTT, how-
ever, the analytical expressions of StdTSTT are derived
based on the unconditional path flows which are inde-
pendent of each other. This inconsistency (correlation
and independency) leads to the difference in estimated
and simulated StdTSTT; therefore, the analytical ex-
pression of StdTSTT should be applied cautiously. De-
spite this, the ETSTT still presents a reliable approxi-
mation; in addition, the estimated expected link flows
and the corresponding standard deviations satisfacto-
rily match the simulated results, as shown in Figures 3
and 4.
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Table 3
Path choices of MED and MEP for O-D pair (3-16)

Path
index

Path (represented
by a sequence of

nodes)

Path choice
probability

(MED)
Strategic path

choice for (MEP)

1 [3,4,5,6,8,16] 0.235 0.234
2 [3,4,5,9,8,7,18,16] 0.093 0.089
3 [3,1,2,6,8,16] 0.153 0.157
4 [3,4,5,9,10,16] 0.166 0.166
5 [3,4,5,6,8,7,18,16] 0.098 0.099
6 [3,4,5,9,8,16] 0.17 0.17
7 [3,1,2,6,8,7,18,16] 0.085 0.085

3.2 The most likely strategic link choice

Sometimes the aggregated link flows would not suf-
fice when O-D-specific information are required, such
as O-D matrix estimation, emission analysis and many
other transportation applications. The maximum en-
tropy provides a way to find the “most likely” strate-
gic link choice. In the analysis, the relative gap (termi-
nation criterion) for the F-W method is set to 1*e−5,
the tolerance threshold is set to 10%. In total, the F-
W method provides 1,434 paths, among which 907 paths
are identified as the equilibrium paths. To demonstrate
the difference between the traditional maximum en-
tropy method (the deterministic case, hereby referred to
as MED) and the maximum entropy of probability dis-
tribution (where the entropy of path flow distribution is
considered, hereby referred to as MEP), the results of
these two methods are compared in Table 3. In MED,
we first solve the Wardrop’s user equilibrium, where
all O-D demands are treated as deterministic variables.
Then, the optimization program in Equations (39) to
(42) is solved to provide the path choice probabilities. In
MEP, we solve the optimization program in Equations
(46) to (49) and the strategic path choice is obtained. In
Table 3, O-D pair (3-16) is chosen to demonstrate the
difference between MED and MEP, the demand for this
O-D pair is 200. The differences in path choice can be
seen in paths 1, 2, 3 and 5, and such difference may be
more significant if only few paths are considered as user
equilibrium paths. No ground truth is found yet to prove
which method is better, but the results clearly indicate
the necessity and importance of accounting for uncer-
tainties in entropy.

Table 4 demonstrates the strategic link choice on link
24; the O-D pairs with no trips assigned to link 24 are
not presented in the table. If the strategic link choice
is one, it means all the users for that O-D pair will al-
ways choose this link. Note that the strategic link choice
should not be greater than one. The importance of the
strategic link choice lies in that it provides the link flow

Table 4
The unique strategic link choice for link 24

From origin To destination Strategic link choice

3 7 0.309
3 8 0.270
3 16 0.259
4 7 0.207
4 8 0.125
4 16 0.146
4 18 0.398
4 20 0.250
5 7 0.318
5 8 0.172
5 16 0.213
5 20 0.398
9 7 1.000
9 8 1.000
9 16 0.678
9 18 1.000
9 20 1.000

10 8 1.000
11 8 1.000
12 7 0.134
12 8 0.148
12 16 0.152
12 18 0.268
13 7 0.051
13 8 0.148

information disaggregated by O-D pairs. In real world,
obtaining aggregated link flow is viable and efficient,
and the strategic link choice can clearly present the
“from-and-to” information on links.

4 CONCLUSION

In this article, we proposed a model which extends the
notion of the strategic user equilibrium originally pro-
posed by Dixit et al. (2013) and Waller et al. (2013).
The proposed model relaxed the assumption of propor-
tional demand, hence improved the model fidelity. In
this model, users equilibrate based on an expected con-
dition as opposed to a deterministic cost. To capture this
behavior, the model assumes that users rationally make
their strategic link choice by considering all possible
demand scenarios (all the O-D demands are indepen-
dent of each other) in a known distribution. This strate-
gic link choice is then followed regardless of the real-
ized travel demand in any given scenario. Therefore, the
state of equilibrium may not be observed on a given day.
As such, the proposed model is illustrated to replicate
the behavior of observed link travel time variability. In
the proposed model, link flow distributions and users’
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strategic link choice are proved to be unique mathemat-
ically; network performance measures are given in ana-
lytical expression, which reduces the computation bur-
den of network performance prediction. The efficiency
and accuracy of these analytical expressions are demon-
strated with a numerical example; the importance of ac-
counting for probability distribution in entropy function
is also presented. Therefore, this model accounts for the
demand uncertainty and users’ strategic choice while
maintaining computation simplicity and tractability.

However, every model has its limitations. In this arti-
cle, we assumed that O-D demand follows a Poisson dis-
tribution to ensure uniqueness, this forces the expected
demand to be equal to the variance of demand, and this
assumption may limit the applicability of the model.

Many possibilities are still to be explored under the
model’s framework. O-D demands may be assumed to
follow some biparametric probability distributions if the
uniqueness is guaranteed, which allows mean and vari-
ance to be different. In addition, we may account for
capacity uncertainty by assuming the capacity also fol-
lows a certain kind of distribution. Finally, integrating
this model into the O-D estimation problem would be a
straight forward contribution.
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