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Abstract: A critical issue in origin–destination (O–D) demand estimation is under-determination: the number of O–D pairs to be
estimated is often much greater than the number of monitored links. In real world, some centroids tend to be more popular than
others, and only few trips are made for intro-zonal travel. Consequently, a large portion of trips will be made for a small portion
of O–D pairs, meaning many O–D pairs have only a few or even zero trips. Mathematically, this implies that the O–D matrix is
sparse. Also, the correlation between link flows is often neglected in the O–D estimation problem, which can be obtained from
day-to-day loop detector count data. Thus, sparsity regularisation is combined with link flow correlation to provide additional
inputs for the O–D estimation process to mitigate the issue of under-determination and thereby improve estimation quality. In
addition, a novel strategic user equilibrium model is implemented to provide route choice of users for the O–D estimation
problem, which explicitly accounts for demand and link flow volatility. The model is formulated as a convex generalised least
squares problem with regularisation, the usefulness of sparsity assumption, and link flow correlation is presented in the
numerical analysis.

 Nomenclature
N link (index) set
M O–D pair (index) set
Km path set for O–D pair m
V vector of link flow
V
~ vector of the observed expected link flow
T vector of O–D travel demand
T
~ vector of the prior estimate of O–D travel demand
T p vector of prior estimated O–D demand
tnf free flow travel time on link n
Cn capacity on link n
tn() travel cost function for link n
dn

m users’ O–D specific link choice, which represents the
proportion of O–D pair demand Tm on link n

hk
m expected flow on path k, connecting O–D pair m

G() probability density function of a variable
Tm demand variable for O–D pair m
λn parameter of the Poisson distribution for flow on link n.

λ = λ1 … λn
T

γm parameter of the Poisson distribution for O–D pair demand
Tm

δn, k
m link-path indicator variable.

δn, k
m = 1 if link n is on path k between OD pair m

0 otherwise
α parameter of the bureau of public roads (BPR) function
β parameter of the BPR function
A assignment map matrix, which represents the proportion of

O–D pair demand Tm traversing link n
Y covariance matrix of observed link flows
δ1 weight parameter for the prior O–D estimation
δ2 weight parameter of the L1 regularisation
pk

m proportion of flow on path k, connecting OD pair m, must be
non-negative

1 Introduction

The development of a country brings changes in the land-use and
economic state of affairs, and the number of trips could vary
accordingly. It is therefore important to identify the frequency of
trips between different centroids in a network for policy makers
and transport planners. A common practice is to infer origin–
destination (O–D) matrix using observed traffic flows collected by
various techniques such as field count, loop detectors or camera. A
simple example below illustrates why O–D matrix is necessary
information in the transportation planning process.

In Fig. 1, assume people will evenly split themselves among all
possible routes. The number below each link indicates the number
of people on that link. Based on the assumption, all three O–D
matrices can produce the same set of link flows specified in the
figure. However, they differ from each other significantly. Now,
say an expressway will be constructed which directly connects
centroid 1 and 3, but what if the second O–D matrix in the figure is
the actual one? In this case, the expressway would just be a waste
of money. Therefore, a reliable O–D matrix is fundamental and
vital for transportation planning. 

Traditionally, the O–D matrix is obtained from plate surveys,
household surveys or roadside surveys [1]. Such survey activities
may suffer from limited response, financial constraint or sampling
coverage. Additionally, by the time the survey data are collected
and processed, the O–D data obtained become obsolete. Nowadays,
the dissemination and application of some modern technologies
such as inductive loop detectors, cellular phones and automatic
license plate recognition systems have provided an efficient way to
collect up-to-date traffic count data, as an alternative to the
traditional approaches, enhanced O–D matrix estimation
methodologies could prove useful for transportation planning.

It is a statistical approach for estimating or calibrating an O–D
matrix from observed traffic counts and some prior knowledge of
the O–D demand (which is represented by O–D matrix in this
paper). In the past, many models have been proposed and widely
applied for O–D matrix estimation [2, 3]. The accuracy of these
calibrated matrices depends on the calibration model used, the
input data errors and on which set of link counts is available.
Comparing to the traditional approaches, O–D matrix calibration is
much more cost-efficient and time-efficient, besides, due to that
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traffic counts are collected automatically every day, the calibrated
results are always up-to-date. However, it is difficult to infer a
unique O–D matrix directly using these approaches because the
number of O–D pairs is much larger than the number of links, and
users’ routing mechanism is unknown; thus some assumptions or
some prior information of O–D matrix is necessary to guarantee a
unique solution.

The issue that the number of O–D pair to be estimated is often
much greater than the number of monitored links is denoted as ill-
posedness or under-determination. The assumption that O–D
matrix tends to be sparse can be used to mitigate such an under-
determination issue. The assumption of a sparse matrix originates
from the commonly observed phenomenon that some centroids
tend to be more popular than others, and only few trips are made
for intro-zonal travel. Consequently, a large portion of trips will be
made for a small portion of O–D pairs, that is, there are a lot of O–
D pairs with only a few or even zero trips. Mathematically, this
implies that the O–D matrix is a sparse matrix. The sparsity of O–
D matrix is represented as the L1 regularisation in the model [4].

As a fundamental element of the transportation planning
process, O–D trip matrix plays a principal role and can have a
significant impact on the prediction results. O–D demand is
inherently volatile and may vary day-to-day due to various factors.
This paper explicitly treats demand as a causal variable: the
correlation and variation of link flow are caused by the demand
volatility. This is a different interpretation of link flow variation,
which was often explained as a measurement error in the
generalised least squares method [5, 6]. Such a notion allows the
utilisation of link flow correlation, which can be obtained from
loop detectors on multiple days, and could hence improve the
estimation quality [7–9].

Additionally, users’ route choice information are often assumed
known, or obtained with an elaborate computation. Besides, the
inherent volatility in demand and the resulted link flow correlation
are often neglected, whilst both could influence users’ route choice
significantly. Therefore, in addition to the sparsity regularisation,
the strategic user equilibrium for independently distributed O–D
demands (I-STRUE) [10] is also implemented to account for
demand uncertainty. I-STRUE is a user equilibrium assignment
model which assumes that travellers choose a route to minimise
their expected travel cost, where their decision is based on
knowledge of a demand distribution, rather than a deterministic
demand value. I-STRUE is defined such that at equilibrium, all
used paths have equal and minimal expected travel costs. I-STRUE
can account for demand volatility while maintaining computation
efficiency. The consistent incorporation of demand volatility in
both route choice assignment and O–D demand estimation helps
provide a robust estimation of O–D matrix.

In general, sparsity regularisation is combined with link flow
correlation to provide additional inputs for the O–D estimation
process. The usefulness of sparsity assumption and link flow
correlation is presented in the numerical analysis, and the
uniqueness of the model is proved. The highlights of the proposed
model are:

(i) The non-negativity of O–D demands is included in the
optimisation problem.

(ii) The sparsity of O–D matrix is accounted for and is used as a
regularisation to enhance estimation quality.
(iii) Link flow correlation is incorporated to improve more
information for the under-determined O–D estimation problem.
(iv) A novel assignment model is implemented to provide users’
route choice information, which accounts for demand volatility
while maintaining the computation efficiency.

2 Background
From the past studies, O–D matrix estimation can be categorised as
gravity model [11], growth factor model [12, 13] and traffic count
data-based O–D matrix estimation [3]. This paper focuses on the
traffic count data-based O–D matrix estimation problem, which
mainly relies on statistical approaches using traffic count data.
However, the problem is often challenging due to that the number
of observable links in a traffic network is often much smaller than
the number of O–D pairs to be estimated. Therefore, it may not be
possible to obtain a unique solution from a single set of link counts
alone. As a consequence, various forms of additional assumptions
and a priori knowledge are required to obtain a unique solution.

A wide range of statistical O–D estimation methods have been
proposed according to their assumptions, including the generalised
least square method [5, 6], the maximum likelihood method [14],
bi-level programming approach [15], Bayesian approaches [16, 17]
and maximum entropy [18]. Integration of the methods mentioned
above was also of recent interest [1, 19].

Basically, the objective of traffic count data-based O–D matrix
estimation is to optimise an objective function (which may vary
based on model requirements) subject to a set of constraints
(typically the assignment of O–D flows, such as (3); and
positiveness of O–D trips and link flows, such as (2) and (4)).
Mathematically, the problem is to find an optimal O–D matrix
T∗ = T1, …, Tm

trans such that

T∗ = arg min : f 1 T, T
~ + f 2 V, V

~
(1)

Subject to

T ≥ 0 (2)

V = AT (3)

V ≥ 0 (4)

where T is the target O–D matrix to be estimated; T∗ is the optimal/
estimated O–D matrix; T

~
 is a prior O–D matrix; A is the

assignment matrix, which represents the proportion of O–D trips
on a link; V is a vector of link flow produced by the target O–D
matrix; V

~
 is a vector of observed link flow, normally obtained from

traffic count data.
Note that ()trans represents the transpose of a vector/matrix. As

aforementioned, additional assumptions are required to ensure
solution uniqueness, which is reflected in the measurement
functions f 1(), f 2(). Among all the statistical O–D estimation

Fig. 1  Simple example
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methods, one advantage of the generalised least squares method is
that no distributional assumptions on the data are required, which
increases the method's flexibility. Also, the method associates
survey data directly with traffic count data, while considering the
relative accuracy of these data [6]. The method is also proved to be
useful in exploiting O–D matrix structure [20].

The aforementioned statistical approaches are mainly applied in
static networks. However, sometimes the temporal impact and
congestion effect should not be neglected; in this case, a time-
dependent O–D matrix is required [21–24]. Additionally, the O–D
estimation problem has been extended to account for the stochastic
nature of observed flows [25, 26], Some computer-aided heuristic
algorithms have also been applied to this problem such as the
genetic algorithm [27, 28]. The main advantage of the genetic
algorithm is its capability of solving non-convex, complex
optimisation, while the drawback is that the solution is not
guaranteed to be optimal. Some other methods have also been
proposed by researchers to enhance the model applicability, such as
multi-class O–D estimation [28, 29], fuzzy-based approach [30, 31]
and neutral network based approach [32]. However, issues
regarding computation complexity and the application to large-
scale networks still remain a challenge. The model proposed in this
paper can provide a unique estimation of O–D matrix, while
maintaining the computation simplicity.

On the other hand, higher order information of a network, such
as the variance and covariance of observed link flows, can
potentially provide more constraints to the traffic count data-based
model. This is considered as network tomography problems in
statistics and computer science literature [2, 33, 34], but its
application in transportation models is yet to be fully explored.
Cremer and Keller [35] demonstrated that aggregating or averaging
link count data collected over a sequence of time period may result
in the loss of important information. Hazelton [9] proposed a
weighted least squares method to account for the covariance of
links and assumed a parameter to explain the circumstances when
the variance exceeds the mean if a Poisson distribution is used.
Bell [36] proposed a maximum likelihood method and found the
analytical solution to the covariance of O–D matrix by using a
Taylor approximation. However, measurement error is the main
source of uncertainty in literature. This paper consistently accounts
for demand volatility and the resulted link flow correlation, the
latter one can be easily provided by loop detectors data on a daily
basis.

Estimation of the O–D trip matrix also requires a robust
assignment model. Logit-based stochastic assignment model was
incorporated in a linear programming model, such models are
called path flow estimation based models [37], these models either
needs path enumeration [38] or information on the set of shortest
paths [39]. However, when applying the assignment model to a
large network, realism and computational complexity are both
critical in determining a model's practical applicability. Further, a
major complication in transportation modelling is the ability to
properly account for the inherent uncertainties regarding demand
[40, 41] and capacity levels [42, 43]. Additionally, as has been
noted, uncertainty regarding these variables directly affects route
choice behaviour [44] and traffic predictions [45]. It is, therefore,
necessary to incorporate these stochastic elements into models to
ensure robust planning capabilities, but to do so in a manner that
maintains computational tractability. The strategic user equilibrium
[46, 47] effectively accounts for the impact of demand uncertainty
subject to Wardrop's UE conditions, and under the static user
equilibrium framework, the computation tractability and simplicity
are preserved. The model was extended to the dynamic traffic
assignment [48], independently distributed O–D demands [10] and
road pricing scheme [49].

In the proposed model, the assumption of sparse O–D matrix is
represented by the L1 regularisation, because minimisation of the
L1 regularisation term induces a sparse solution. Previously
researchers have used L1 regularisation to account for network
anomalies [50–52], the impact of path flow sparsity in the O–D
estimation problem was also explored [53]. However, few
researches have considered that the O–D demands should be non-
negative in the regularisation problem, which is an important

constraint in the O–D estimation process. Menon et al. [4] provide
an in-depth discussion of the importance of non-negativity in O–D
demands in ill-posed problems and showed that it could be useful
in providing a potentially unique solution. Some researchers have
focused on the Lagrangian dual of the for L1 regularisation, which
regards the problem as an example of the basis pursuit principle.
The advantage is to avoid tuning weight parameters for the
regularisation term, with a compromise of spending more time on
the optimisation procedure [53–56].

In Section 3, the model is formulated as a convex generalised
least squares problem with regularisation. The usefulness of the
sparsity assumption and link flow correlation are presented in the
Sioux Falls network in Section 4. Section 5 provides a conclusion
and possible future research direction.

3 Model formulation
This section defines the mathematical formulation of our proposed
model; a summary of the notations used in the section is listed as
follows.

Traditionally, the application of the generalised least squares
method in transport O–D estimation problem is to find an O–D
matrix that minimises the squared Mahalanobis distance of two
residual vectors: the vector of link flow and the vector of O–D
demands. The method can be formulated as the following
optimisation program:

TGLS = arg min : (T − T
~)transZ−1(T − T

~)
+(V − V

~)transY−1(V − V
~)

(5)

Subject to

T ≥ 0 (6)

V = AT (7)

V ≥ 0 (8)

where Y−1 indicates the inverse of the variance–covariance matrix
of the ‘errors’ in observed link flows, Z−1 indicates the inverse of
the variance–covariance matrix of O–D demands, ()trans means the
transpose of a matrix. Since the O–D estimation problem is
generally an ill-posed problem if no prior information is available,
it is necessary to utilise as much information as possible. However,
a majority of the previous literature has often neglected the
correlation between link flows, that is, Y is considered as a
diagonal matrix whose diagonal elements represent the variance of
the observation error. In addition, the non-negativity constraint is
often ignored during the optimisation process. To mitigate the
under-determination of such a problem, these two issues will be
discussed and resolved below, to provide a robust estimation of O–
D matrix.

3.1 Correlation of link flows

Incorporating the correlation of link flows can potentially utilise
more information from observed link flows. Given a network of n
links, n pieces of information are input to the optimisation problem
if only the variance of link flow is considered, but n2 pieces of
information are utilised if the covariance matrix is incorporated,
because the dimension of expected link flow vector is n by 1 while
the dimension of covariance of link flows is n by n. A key
assumption is made here to account for the covariance of link
flows.

A1: Each O–D pair demand follows the Poisson distribution
and is independent of each other.

Note that a Poisson variable is non-negative, which is consistent
with real-world demand. As a univariate distribution defined only
for integers it has been adopted in many previous literature [3, 6, 9,
12, 57]. However, actual demand distribution may vary depending
on network type, time frame and many other factors, which
distribution best fit the actual demand is an open question. In this
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paper, such an assumption allows us to interpret the error term
differently from other literature: here the ‘error’ is actually the
volatility of link flow which is caused by the demand uncertainty,
instead of measurement errors. In other words, each O–D pair
demand is a ‘causal’ variable which is projected to each link by the
assignment map matrix A. More importantly, such an interpretation
of the covariance matrix Y allows us to scrutinise the correlation
between each link. Thus, given the observed link flows on multiple
days, we will be able to find the covariance matrix of link flows:

Obs =
l1

1 … l1
d

⋮ ⋱ ⋮
ln1 … lnd

(9)

Y = Covariance(Obs) (10)

As each O–D pair demand follows a Poisson distribution, they can
be defined by their corresponding parameters (for a Poisson
distribution, these parameters are each variable's expectation)

T =
γ1

⋮
γm

, m ∈ M (11)

Therefore, the objective is to find a vector of demand parameter for
the generalised least squares method. Before proceeding further in
solving the objective function, we introduce another regularisation
term for our optimisation problem.

3.2 Regularisation inducing sparsity and non-negativity of
demand

It is a common phenomenon that only a small portion of O–D pairs
will have a large number of trips, especially for commuter trips,
which implies that the O–D matrix tends to be a sparse matrix.
Hence, it is assumed here that the O–D matrix is sparse to some
extent. In our optimisation problem, the sparsity of an O–D matrix
can be obtained by adding the L1 regularisation to the objective
function

TGLS = arg min : (AT − V
~)transY−1(AT − V

~)
+δ1(T − T

~)trans(T − T
~) + δ2T1

(12)

where T1 represents the L1 norm of a vector, Y−1 indicates the
inverse of the variance–covariance matrix of link flows, δ1 and δ2
are weight parameters which are contingent on our belief of the
prior estimates and sparsity of O–D matrix, respectively. The L1
norm here can be expressed as

T1 = ∑
m ∈ M

γm (13)

To explain why minimisation of the L1 norm induces sparsity, we
start from the L0 norm of a vector, which is

T0 = ∑
m ∈ M

γm (14)

γm =
1, γm ≠ 0
0, γm = 0 (15)

Clearly, the L0 norm is the number of non-zero elements in the O–
D matrix. Previous literature on the Lasso algorithm and on the
compressed sensing has suggested that under some assumptions,
minimising L1 norm can approximate the minimisation of L0 norm
[58, 59], that is, minimisation of L1 norm induces a sparse O–D
matrix.

The function of L1 norm is not differentiable everywhere,
however, one may note that the parameter for each O–D pair is
non-negative, which allows us to take the absolute-value sign out

of the objective function. This allows us to write the objective
function as the following form:

z(T) = arg min
T ≥ 0

(AT − V
~)transY−1(AT − V

~)

+δ1(T − Tp)trans(T − Tp) + δ2 ∑
m ∈ M

γm
(16)

Hence, the objective function becomes differentiable everywhere.
When δ2 equals 0, the problem is exactly the classical generalised
least squares O–D estimation problem. The differentiability enables
us to prove the convexity of the objective function we take the
second partial derivatives with respect to the demand vector, which
provides us the Hessian matrix of the objective function

∂z(T)
∂T∂T = 2AtransY−1A + 2δ1I (17)

where I is an identity matrix of dimension m by m. Clearly, the
Hessian matrix is positive definite, hence the proposed model has a
unique optimal solution. It is vital that the model can provide a
unique estimation of O–D matrix, because it guarantees that the
proposed model is applicable to a variety of transportation planning
process.

The use of non-negative O–D parameters is consistent with our
intuition – the number of trips made between each O–D pair should
always be greater than or equal to zero. In addition, such a
constraint allows the assumption of Poisson distribution. If the
non-negativity constraint is not considered, we may obtain an
analytical optimal solution by taking the first partial derivative.
Many researchers have solved the generalised least squares O–D
estimation by such a closed-form update technique.
Notwithstanding this, it is hard to interpret a negative O–D
demand, so we avoid a negative solution in our formulation, the
optimisation problem with non-negative constraints can be solved
by various methods such as gradient descent method.

3.3 Regarding the assignment map matrix and demand
volatility

Due to the above interpretation that the link flow variation is
caused by demand volatility, we need to account for these
uncertainties in the assignment map matrix A. That is, users should
consider demand volatility when making their route choice
decision. Such a goal can be achieved by applying the I-STRUE. I-
STRUE is defined such that the expected travel costs are equal on
all used paths, and this commonly expected travel time is less than
the actual expected travel time on any unused path. In other words,
given user equilibrium expected path cost, any deviation from the
existing expected path flows cannot reduce the expected path cost.
This notion can be formulated as the following mathematical
program:

min z([λ]) = ∑
n ∈ N

∫
0

λn∫
−∞

+∞
tn(ln)G(ln) dln dλn (18)

Subject to

∑
k ∈ Km

hk
m = γm, ∀m ∈ M (19)

hk
m ≥ 0, ∀m ∈ M, k ∈ Km (20)

λn = ∑
m ∈ M

∑
k ∈ Km

hk
mδn, k

m , ∀n ∈ N (21)

where ln is the link flow variable which will be integrated from
negative infinity to positive infinity to represent expected travel
cost on a link: ∫−∞

+∞tn(ln)G(ln) dln. It is a function of λn. The
mathematical program has been proved to be equivalent to our
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definition of I-STRUE. If the expected path flow is expressed as a
proportion multiplied by the expected demand, that is

λn = ∑
m ∈ M

∑
k ∈ Km

hk
mδn, k

m = ∑
m ∈ M

∑
k ∈ Km

pk
mδn, k

m sm (22)

Then, we can obtain the O–D specific link proportions, also known
as the assignment map matrix, by the following equations:

dn
m = ∑

k ∈ Km

pk
mδn, k

m , ∀m ∈ M, ∀n ∈ N (23)

A =
d1

1 … d1
m

⋮ ⋱ ⋮
dn

1 … dn
m

(24)

The assignment map matrix represents the proportion of O–D pair
demand Tm traversing link n, it indicates the proportion of link
flow disaggregated by different O–D pairs, which is extremely
important in many transportation applications such as O–D matrix
estimation, emission analysis and network design problem. To
summarise, the implementation of I-STRUE accounts for the
demand uncertainty in users’ routing mechanism while maintaining
the computation simplicity under the classical user equilibrium
formulation.

4 Numerical demonstration
The objective of the analysis is to test if the proposed model can
effectively estimate the O–D trips from day-to-day observed link
flows. This analysis is conducted on the Sioux Falls network
(which has 24 nodes and 76 links). The network properties are pre-
defined in [60]. Each O–D demand is assumed to follow a Poisson
distribution and is independent of each other. The BPR function
parameters α and β are set to 0.15 and 4.0, respectively. The prior
O–D matrix is assumed to be a 10% overestimation of the
simulated one, that is, the simulated O–D matrix will be inflated by
10% to represent the prior O–D matrix, to demonstrate the fact that
a prior O–D matrix is not perfectly accurate.

To collate observed link flow data, a Monte-Carlo simulation is
conducted. It consists of running the strategic user equilibrium
model and generating random link flow samples accordingly. First,
we run the I-STRUE based on the demand matrix pre-defined in
Bar-Gera (referred to as simulated O–D matrix in this section) and
obtain the assignment map matrix. Then 10,000 O–D matrices are
sampled independently. Finally, these sampled O–D matrices are
assigned to each link according to the assignment map matrix. The
resulted simulated link flows are used to represent observed day-to-
day link flow discussed in (9) and (10). The impact of the weight
parameters δ1 and δ2 are explored, in conjunction with how the
sparsity regularisation will facilitate improving the estimation. The
estimated O–D matrix should closely approximate the simulated

one; the link flow distributions reproduced by the I-STRUE model
based on estimated O–D matrix should also closely match the
simulated link flows.

To evaluate the performance of the proposed model, the mean
square error (MSE) is introduced here

MSE = ∑
m ∈ M

(γm − γm
∗ )2

K (25)

where γm
∗  and γm denote the simulated O–D demand and estimated

O–D demand, respectively, K is the number of O–D pairs. MSE
indicates how the estimation deviates from the simulated O–D
matrix. In Fig. 2, the impact of the weight parameters is
demonstrated. When δ1 is fixed to 0.25 or 0.3, as illustrated in the
two series in the figure, the MSE of the estimated O–D demands
drops with the increase of δ2. On the contrary, If δ1 is fixed to 0.1,
0.15 or 0.2, the curve is similar to parabola, and the MSE will
climb up after the minimum is reached. The figure shows that the
incorporation of sparsity regularisation improves the estimated
results in general; however, if we excessively amplify the
importance of sparsity (that is, if we believe the O–D matrix is very
sparse, which is not the case for the Sioux Falls network), the
regularisation may have detrimental impact on the estimation.
Therefore, the choice of the weight parameters should be
scrutinised according to different cases rather than apply a set of
uniform values. 

In Fig. 3, the simulated expected link flow and the
corresponding estimated mean link flow are plotted from the
smallest to the largest. The estimated expected link flows are
produced by the I-STRUE model based on the estimated O–D
matrix (when δ1 = 0.1, δ2 = 31). The R-squared value of 0.94
illustrates that the estimated expected link flow closely
approximates the simulated expected link flow. Hence, the
proposed model is capable of finding an estimated O–D matrix that
produces a set of link flow similar to the simulated one while being
as sparse as possible. 

Fig. 4 demonstrates the sparsity level for different δ2. According
to [61, 62], the Hoyer's formula provides a scalable, normalised
and generalised sparsity measure. It is therefore adopted to
illustrate the sparsity level of the estimated O–D matrix

H = K −
∑m ∈ M γm

∑m ∈ M γm
2 / K − 1 (26)

The weight parameter δ1 is fixed to 0.1, and δ2 will vary from 1
to 96 with an increment of 5.

It is presented that the estimated O–D matrix becomes sparser
with the increase of δ2. Therefore, as discussed in the previous
section, minimisation of the L1 norm regularisation can induce a

Fig. 2  Impact of weight parameters on the estimated results
 

Fig. 3  Regression analysis of estimated and simulated expected link flow
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sparse solution. Additionally, if it is believed that the true O–D
matrix tends to be sparse, a higher weight should be imposed on δ2.

5 Conclusion
Under-determination is a common issue in O–D matrix estimation
problem, to mitigate such an issue, this paper incorporates sparsity
regularisation and link flow correlation in the generalised least
squares method. In addition, a specific assignment model, I-
STRUE, is implemented to provide users’ route information while
accounting for demand volatility. The solution to the proposed
mathematical formulation has been proved to be unique, which is
critical to have stable modelling outputs. The application of I-
STRUE in O–D estimation is also novel, which can account for
demand volatility and users’ strategic route choice mechanism in
the O–D estimation framework. The numerical analysis suggests
that sparsity regularisation can improve estimation quality if
treated properly, and the link flows produced based on the
estimated O–D matrix can closely approximate the observed link
flows. Therefore, by utilising the sparsity feature of O–D matrix, as
well as the link flow correlation, the model is capable of providing
a more robust estimation of O–D matrix. Moreover, if the sparsity
level of O–D matrix is known, one can tune the parameters in the
model to further improve output accuracy.

However, every model has its limitation. The weight parameter
for the sparsity regularisation term needs to be tuned according to
different cases. As a consequence, additional investigation on O–D
matrix sparsity may be required to determine the optimal weight
parameters before implementation of the model. Another issue is
the assumption of Poisson distributed O–D demand, which is not
always the case in real world. Hence, extending the model to other
distributions can enhance the model's applicability.
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