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ABSTRACT
To exploit the potential of electric vehicles (EVs) as a sustainable form of transport, the technology 
must be integrated into the traditional transport planning process. EV energy consumption 
will also become an essential issue for regional energy providers who will need to adapt to the 
additional electricity demand created by EVs. This study presents research to facilitate planning for 
EVs by incorporating travelers' behavior and energy consumption into the evaluation process by 
introducing a novel framework for the network design problem (NDP) which employs a previously 
introduced constrained shortest path algorithm that accounts for the distance limitations imposed 
on EV drivers. For certain design scenarios, the total travel time and total energy consumption are 
shown to be conflicting objectives. In addition, a new equity issue that arises in networks comprised 
of mixed classes of vehicles is explored. Results illustrate that a given design scenario can impact 
vehicle user groups differently.
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Introduction

Transport-based research efforts relating to electric vehi-
cles (EVs) are experiencing a surge in popularity due to 
advancements in technology, their potential to reduce 
harmful emissions originating from traditional petro-
leum-fueled vehicles, and a greater emphasis on global 
sustainability in many sectors. While the beneficial envi-
ronmental impact provides ample motivation for inves-
tigation, it is also important to note that EVs introduce a 
closer tie between the road network and the electric power 
system that will require collaborations and modeling tools 
to effectively exploit that do not exist today. Traditionally, 
electric power systems operators have needed to predict 
energy demand that results from static sources (e.g. house-
holds, buildings, industries). However, when EVs achieve 
a small but significant level of market penetration, the 
aggregate mobile energy use generated by users’ driving 
patterns will comprise a substantial new form of energy 
demand. Predicting this new source of energy demand 
requires a model based on a cross-disciplinary platform 
that captures vehicle driving patterns, EV energy use, EV 
market locations, and spatio-temporal charging behavior.

The transport problem of interest in this work is a spe-
cific variation of the well-known network design problem 
(NDP), which is called the discrete multiclass equilibrium 

network design (DIMEND) problem. The objective of the 
DIMEND is to identify the optimal set of link capacity addi-
tions to minimize a stated objective. Such capacity addi-
tions can be used to represent of the set of infrastructure 
design scenarios under consideration. This work considers 
the traditional NDP objective, which is to minimize total 
system travel time (T), as well as an additional objective, to 
minimize total system energy consumption (E), where the 
energy is generated by EV mobility activities in a network.

The addition of EVs into the system introduces impor-
tant behavioral modifications that are not addressed in 
traditional transport planning models (i.e. traditional user 
equilibrium (UE)). Specifically, EV drivers now face a dis-
tance constraint due to both range anxiety and the limited 
energy capacity of the vehicle battery. For this reason, the 
subproblem of the DIMEND problem evaluated in this 
study is a distance constrained UE assignment model 
(Jiang, Xie, and Waller 2012), which is able to capture 
the effect of EVs’ route choice on the performance of a 
network. The route choice algorithm will be introduced 
and described in Section 3.

This work includes two classes of vehicles. EVs, which 
are differentiated by the use of the special constrained 
shortest path routing algorithm, and traditional internal 
combustion engine vehicles (ICEVs) that are not subject 
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consumption of vehicles in the network based on their 
route. Network design traditionally addresses the problem 
of finding the optimal location(s) to enhance a network 
given a limited ‘budget.’ In this work, such enhancements 
are road capacity improvements that can have a variety 
of interpretations, from the discrete additions (e.g. lanes, 
roads) to projects that may have a more continuous nature 
(e.g. optimized signal timing plans, other projects like 
widening of shoulders, elimination of parking, etc.). The 
NDP is traditionally formulated as a bi-level mathematical 
programming problem, where the upper level represents 
the ‘planner’s’ perspective that measures the impact in the 
network due to the change, and the lower level represents 
the users’ reaction to those changes (Yang and Bell 1998). 
Due to the nonconvex cost function resulting from the 
addition of capacity, the NDP can’t be solved by traditional 
optimization techniques and therefore heuristic methods 
are necessary. Formulations and solution algorithms for 
the traditional traffic NDP exist in many variations and 
applications (see Yang and Bell (1998) and Wismans, Van 
Berkum, and Bliemer (2011) for in depth reviews).

The application of the DIMEND addressed in this study 
is unique in the way it considers the constrained behavior 
of EVs. Furthermore, the design decision in this study is to 
select the best project from a discrete set of capacity enhance-
ment scenarios, rather than charging station location. The 
NDP in the transport setting is well established and heuristic 
solution methods have been used by other researchers to 
solve the bi-level traffic NDP for a number of applications 
including multi-objective signal timing (Sun, Benekohal, 
and Waller 2003), accounting for demand uncertainty 
(Ukkusuri and Waller 2008), optimal toll pricing strategies 
(Gardner, Unnikrishnan, and Waller 2008), environmental 
justice considerations (Duthie and Waller 2008), evacuation 
planning (Abdelgawad and Abdulhai 2009; Ng and Waller 
2009), and minimizing emissions (Ferguson, Duthie, and 
Waller 2012; Sharma and Mathew 2011).

EVs are a popular topic in the research, from topics such 
as promoting market uptake (Bakker, Maat, and van Wee 
2014) to analyses of consumer behavior (Bunce, Harris, 
and Burgess 2014), range behavior (Franke and Krems 
2013), and optimal location of charging infrastructure 
(Chen, Kockelman, and Khan 2013; Dong, Liu, and Lin 
2014; Riemann, Wang, and Busch 2015). Researchers 
began analyzing EVs from an aggregate perspective based 
on historical data or in transport planning models with-
out accounting for the changes in behavior. For example, 
Raykin, Roorda, and MacLean (2012) evaluated a range of 
driving patterns on the tank-to-wheel energy use of plug-in 
hybrid EVs for multiple travel routes between a single ori-
gin–destination pair. They used traffic assignment to iden-
tify the routes and link conditions, and driving cycles to 
compute energy use. Artmeier et al. (2010) introduced a 

to any distance constraints. The energy consumption of 
each vehicle type is calculated using a speed-variable 
model that is based on real data from reputable sources 
in industry (Tesla 2012). These energy consumption rates 
are combined with the vehicular trajectory outputs from 
the UE assignment model in order to compute a set of 
metrics to evaluate a given network design scenario, where 
a network design scenario refers to the number of links to 
which to add capacity and the amount of capacity to add 
(e.g. three links, 1500 vph). An evolutionary-based heu-
ristic method is then implemented to solve for the optimal 
set of links for each network design scenario. The trade-off 
between total system travel time and total system energy 
consumption is compared under different design objec-
tives and different budget constraints. The results reveal 
differences in network design decisions when considering 
EV drivers in addition to traditional ICEVs.

Hence, the motivation for this work is twofold: to 
explore the effects of an additional performance measure 
(vehicle energy consumption, particularly for EVs) on 
network design decisions, and to advance research that 
will aid the potential convergence of the transportation 
road network and the electric power system. Furthermore, 
dozens of cities around the world are conducting projects 
to evaluate the potential of EVs in their region. An essen-
tial component of such a forecast is tied to the energy 
consumption which directly leads to additional demand 
on the electric grid at the household, neighborhood, and 
regional levels. Given the novelty of EV technology, these 
forecasts are generally based on highly aggregated data 
such as average annual vehicle travel distances and static 
energy consumption rates, or estimated battery capaci-
ties. This work provides a more accurate estimation of the 
additional demand generated by EVs by exploiting each 
driver’s disaggregate travel patterns based on an equilib-
rium model adapted to account for EV driver route choice. 
This type of analysis is an integral first step in predicting 
regional demands for power systems. Furthermore, energy 
consumption can be used as a proxy for emissions produc-
tion and thus a network that minimizes energy consump-
tion will also be environmentally beneficial.

This work begins with a short literature review focusing 
on the NDP. Next the mathematical model for the prob-
lem is introduced, followed by a discussion of the solution 
methodologies employed in this research. Next, the com-
putational results are presented and finally this work con-
cludes with a discussion of future directions for research.

Literature review

In order to analyze the impact of EVs on traffic design 
policies, this work focuses on the DIMEND problem, with 
the additional consideration of calculating the energy 
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vehicle routing problem where EVs can use regenerative 
braking to regain battery power and extend their range.

However, researchers have also recognized that EVs 
will impact not just physical characters of driving such 
as fuel economy, but also route choice behavior. Jiang 
(2012) and Jiang, Xie, and Waller (2012) formulated a 
constrained shortest path problem to account for range 
anxiety, and implemented it within a traffic assignment 
model that was solved using a Frank–Wolfe-based algo-
rithm. This model was additionally applied to model 
combined destination, route, and parking choices (Jiang 
et al. 2014) and to account for drivers choosing between 
gasoline vehicles and EVs (Jiang and Xie 2014). Adler  
et al. (2016) represent the driving behavior of EVs with the 
‘shortest walk’ problem, which is a shortest path problem 
intended to minimize the detouring costs due to refueling 
for EVs. They formulate this problem as an integer pro-
gram with the objectives of minimizing traveling distance 
with an unlimited number of stops or a maximum of p 
stops are allowed. He, Yin, and Lawphongpanich (2014) 
propose an alternate equilibrium-based approach where 
recharging time, energy consumption, and enhanced 
solution algorithms are also considered (although net-
work design is not), and Agrawal et al. (2015) account 
for a range of heterogeneous population of EV drivers in 
terms of their range anxiety. However, this work applies 
the constrained routing algorithm of Jiang (2012) because 
it captures the behavior of users at question and due to its 
straightforward implementation, it allows for the explora-
tion of numerous scenarios for policy implications.

Previous work by Gardner, Duell, and Waller (2013) 
identified the need to incorporate EVs into the transport 
planning process, and highlighted the importance of con-
sidering variability in system performance that may result 
from uncertain travel demand. Gardner et al. also empha-
sized the difference in system performance resulting from 
the technological differences between EVs and traditional 
ICEVs, however they assumed that EV drivers would 
recharge at home, and ignored any behavioral effects of 
range anxiety, or constrained routing. This work builds on 
the previous work by Gardner, Duell, and Waller (2013) 
with two main contributions. Firstly, we consider a novel 
distance constrained routing algorithm (with and without 
recharging) within the UE Assignment model to account 
for the differences in route choice behavior of EV drivers. 
Secondly, we use a heuristic approach to solve the discrete 
NDP under the assumption of EV users, accounting for 
both system travel time and system energy consumption.

Problem formulation

The DIMEND problem is formulated using a bi-level 
model. The upper level problem is the road NDP, which 

will be described in detail in the section on solution meth-
odology. The lower level problem is the traditional UE traf-
fic assignment problem with an added distance constraint 
and en-route recharging, which relies on the well-known 
principle of Wardropian UE (Wardrop 1952). Under UE, 
drivers will unilaterally choose a path to minimize their 
own travel cost. When all users behave in this manner, the 
network reaches a state of equilibrium, where no user can 
independently change paths for a shorter travel time. The 
output of the UE problem is a set of link flows, typically 
based on a deterministic forecasted travel demand and 
origin–destination matrix.

The proposed DIMEND model is straightforward, flex-
ible, and appropriate for the proposed application, which 
employs an iterative heuristic solution method (a genetic 
algorithm (GA)). Within the DIMEND model, the two 
vehicle technologies, EV and ICEV, are treated as differ-
ent vehicle classes. The underlying distance constrained 
UE model is able to incorporate different route choice 
models for EV drivers and ICEV drivers simultaneously, 
and can be implemented to estimate vehicle travel time 
and energy consumption for a system composed of both 
ICEVs and EVs. In other words, the distance constrained 
UE model implemented is able to capture the impact EV 
driver’s constrained route choice has on the system, as well 
as all other users (including ICEV drivers). In the next 
two sections, we present the mathematical formulations 
for each of two constrained route choice models, where 
the first doesn’t include the presence of charging stations 
and the second allows for en-route recharging.

Distance constrained traffic assignment problem

As stated previously, EV drivers may behave differently 
than ICEV drivers due to imposed distance constraints. 
Therefore, novel route choice models are better able to 
capture the behavior of the new vehicle technology con-
sidered in this work. In this section and the next section, 
the two novel route choice models first proposed by Jiang 
(2012) are described. The novel route choice models are 
implemented instead of the traditional shortest path prob-
lem within the UE framework, in order to capture the 
effect of the imposed distance constraint on EV driver 
behavior. The UE model forms the lower level subproblem 
of the DIMEND, and produces the travel patterns which 
correspond to a given network design. From these travel 
patterns, the total system travel time and energy consump-
tion are computed. In the next section, the models used to 
estimate system level energy consumption for each vehicle 
technology are presented.

In the first variation of the traditional shortest path 
assignment introduced by Jiang (2012), EV drivers are 
constrained by a distance limitation. This is represented 
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their travel cost. Constraints (2), (3), and (5) are also the 
same as traditional multiclass equilibrium. Constraint (4) 
represents the distance limitation of vehicles, where lbck  is 
the length of path k from origin b to destination c and 
equal to 

∑
(i,j) dij�

bc
ij,k, where dij indicates the length of arc 

(i, j).

Traffic assignment problem with en-route 
recharging

In the second variation, EV drivers can recharge en route 
to their destination at any node where a charging station 
exists. Jiang (2012) proposed the traffic assignment problem 
with en-route recharging (TAPER) formulation to describe 
a second possible future scenario for EVs. The TAPER con-
ditions may represent a future in which there are a limited 
number of fast charging stations available, or a situation 
that includes trips of longer distances, thus necessitating 
the ability to recharge the EV battery during the trip. Again, 
the equilibrium principle applies, but there is an additional 
constraint because the distance traveled between two con-
secutive charging stations cannot exceed the range limita-
tion of the vehicle. The TAPER subproblem differs from the 
DCTAP due to the presence of charging stations and the 
distance limitation of a vehicle class; in DCTAP if the dis-
tance constraint is too small, vehicles cannot travel through 
the network, but in TAPER, the vehicle can recharge but 
must travel through a specific node to do so. As the distance 
constraint becomes larger, the TAPER problem becomes 
equivalent to the DCTAP problem which becomes equiv-
alent to an unconstrained shortest path problem.

Building upon the notation previously introduced, let 
V be the set of charging station pairs indexed by (p, q), 
where Vbc

k  is the set of charging station pairs on path k con-
necting origin b and destination c. Let Q be a sufficiently 
large constant value. The parameter d denotes distance, 
where dij is the length of link (i, j) and dbc,pq

k
 represents the 

distance of the subpath between changing station pq on 
path k between origin r and destination s. Additionally, 
the link subpath incidence parameter �bc,pq

ij,k
 is equal to 1 if 

the link (i, j) is contained in the subpath between charging 
station pair pq on path k connecting origin b and destina-
tion c, and otherwise is 0.

Additionally, two ‘pseudo path flow’ variables are 
introduced, each representing the addition of a unit of 
flow added to a path with positive traffic flow. The binary 
variable ybck  is equal to 1 if the flow of the path f bck > 0, 
and otherwise equal to 0. Finally, ybc,pq

k,m
 represents the 

pseudo subpath flow between any two charging stations. 
Let ybc,pq

k
= 0 if yrsk = 0 and p and q are two charging sta-

tions on path k between b and c; otherwise ybc,pq
k

= 0. 
The nonlinear integer programming formulation for the 
TAPER follows:

using a distance constrained shortest path algorithm. 
Under distance constrained traffic assignment problem 
(DCTAP) conditions, charging is assumed to only be 
available at home or at the destination, or recharging time 
may be prohibitively long. The distance limitation may 
represent constraints based on the capacity of the battery, 
or the range anxiety of EV drivers. While the actual limita-
tion on range of an EV is a complex interaction of speed, 
acceleration, road grade, energy consumption, driving 
behavior, and driving conditions, the range anxiety may 
be perceived by the driver as a simple distance. If a vehicle 
is constrained by distance, the set of path options available 
in a feasible route set contains fewer options than that of 
a vehicle with a greater distance available. As a result, an 
EV driver may select a route that is shorter by distance 
but more congested, and therefore has a higher travel time 
than other routes.

In order to present the formulation of the DCTAP 
problem, consider a directed graph G = (N, A), where N 
is the set of nodes (vertices) and A is the set of arcs (edges), 
in which (i, j) indicates an arc connecting nodes i and j. 
Let W be the set of origin–destination pairs connecting 
origins b with destination c, and let Kbc be the set of paths 
connecting origin b and destination c. Assume there are 
M vehicle classes indexed by m  ∊  M. Travel demand 
between an origin b and destination c for the vehicle class 
m is indexed using gbcm . Assume tij(x) is the travel cost func-
tion for arc (i, j) which is dependent on the flow of that 
arc xij, the decision variable of this problem. Each m ∊ M 
class of vehicles is constrained by a distance limitation Dm. 
�bcij,k is the arc-path incidence matrix, equal to 1 if link (i, j) 
is contained in path k from origin b to destination c and 
0 otherwise. The mathematical programming formulation 
for the DCTAP is presented in Equations (1-5). 

s.t.
 

 

 

 

The equilibrium objective function (1) remains the same 
as traditional UE because users still intend to minimize 

(1)Minimize
∑
(i,j)∈A

xij

∫
0

tij(�)d�

(2)
∑
k∈Kbc

f rsk,m = gbcm ∀rs ∈ W ,m ∈ M

(3)f bck,m ≥ 0 ∀k ∈ Kbc, bc ∈ W ,m ∈ M

(4)
(
Dm − lbck

)
f bck,m ≥ 0 ∀k ∈ Kbc, bc ∈ W ,m ∈ M

(5)xij =
∑
bc∈W

∑
k∈Krs

∑
m∈M

f rsk,m�
rs
ij,k ∀

(
i, j
)
∈ A
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advanced enough that charging time is inconsequential 
and does not add to the disutility experienced by EV 
drivers.

Energy consumption evaluation

The energy consumption of EVs is a particularly impor-
tant issue for regional electricity providers, who will need 
to be able to predict the electricity demand resulting from 
the use of EVs. In particular, electric power systems man-
agers will be interested in knowing where and when EVs 
will plug in, how much electricity they will consume, and 
the power management scheme that will be utilized (i.e. 
smart charging). The proposed model takes a first step 
in answering these questions by quantifying how much 
energy will be consumed by the EVs. A traffic assignment 
model is exploited to answer this question using individ-
ual user travel patterns and average speeds to approximate 
energy consumption rates.

However, vehicle energy consumption rates and 
environmental impacts are difficult to quantify, even 
for ICEVs which have a longer history in both practice 
and research (Aziz and Ukkusuri 2012; Mindali, Raveh, 
and Salomon 2004; Poudenx 2008). Existing commercial 
software often uses a dynamic simulation method that 
was developed based on extensive testing and data. 
However, such a method can be computationally 
cumbersome, depends on driving cycles to predict the 
mobility patterns of the vehicles (which are not always 
a representative of real-world driving, see Joumard 
et al. (2000)), and the software itself can be prohibitively 
expensive. Alternatively, simulation-based traffic 
modeling-based approaches can make estimations 
of vehicle energy consumption, but the data and 
computational requirements may present significant 
barriers for many applications (Ahn et al. 2002).

Fewer empirical results exist for the energy consump-
tion of EVs (Graver, Frey, and Choi 2011; Howey et al. 
2011), although this data-set is expanding rapidly. While 
previous research has focused on the long-term impact 
of the energy consumption of EVs (Ford et al. 2011), it 
is usually based on average driving distances, driving 
cycles, and average per mile estimates. This work is an 
improvement over past models because it is able to capture 
the speed-varying energy consumption rates of vehicles, 
although there are still limitations. Future versions of this 
model will account for more complex factors such as the 
impact of congestion, gradient effects like acceleration and 
braking, and vehicle weight, which may have a significant 
impact for heavy vehicles.

The energy consumption model for ICEVs in this work 
was based on data from the Environmental Protection 
Agency’s MOVES 2010a (Motor Vehicle Emissions 

 

s.t.
 

 

 

 

 

 

 

where
 

 

Constraints (7), (8), and (14) are the same as the tradi-
tional Beckmann formulation for UE. Constraint (11) 
ensures that the distance traveled by a vehicle (i.e. unit 
of pseudo-flow) between charging stations will be less 
than the distance limitation of the vehicle class. Note that 
this formulation does not include the time it will take to 
recharge the vehicle at a charging station. While adding 
this consideration is reasonably trivial (Jiang 2012), for 
the purposes of this work, we assume that the disutility of 
charging time will have a negligible effect on EV drivers, 
or cause them to not recharge at all. The TAPER scenario 
may be assumed to be applied in a future technologically 

(6)
Minimize

∑
(i,j)∈A

xij

∫
0

tij(�)d�

(7)
∑
k∈Krs

f bdk,m = gbcm ∀rs ∈ W ,m ∈ M

(8)f rsk,m ≥ 0 ∀k ∈ Kbc, bc ∈ W ,m ∈ M

(9)Qyrsk,m ≥ f bck,m ∀k ∈ Kbc, bc ∈ W ,m ∈ M

(10)

ybck,m�
bc
ij,k =

∑
p,q∈Vrs

k

y
bc,pq

k,m
�
bc,pq

ij,k
∀k ∈ Krs,∀rs ∈ W ,∀(i, j) ∈ A,m ∈ M

(11)
d
bc,pq

k
y
bc,pq

k,m
≤ Dm ∀bc ∈ W ,∀k ∈ Krs, pq ∈ Vbc

k ,m ∈ M

(12)yrsk,m ∈ {0, 1} ∀rs ∈ W , k ∈ Krs,m ∈ M

(13)y
rs,pq

k,m
∈ {0, 1} ∀rs ∈ W , k ∈ Krs, pq ∈ Vrs

k ,m ∈ M

(14)xij =
∑
rs∈W

∑
k∈Krs

∑
m∈M

f rsk,m�
rs
ij,k ∀

(
i, j
)
∈ A,m ∈ M

(15)d
rs,pq

k
=

∑
(i,j)∈A

dij�
rs,pq

ij,k
∀rs ∈ W , k ∈ Krs, pq ∈ Vrs

k
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the energy consumption of a single vehicle on the link. The 
total energy consumption is found by aggregating over all 
vehicles and links in the network.

 

 

While the curves in Figure 1 capture the fundamental dif-
ferences between vehicle technologies, the scale between 
the two models is significantly different; these data imply 
that EVs are about 10 times more efficient than ICEVs, 
which is not accurate. This is a result of comparing an 
‘average’ ICEV with a highly efficient EV. However, for 
the purposes of this work, it is the difference between the 
behaviors of these two curves that is of interest. Finally, 
these models reflect mobile vehicle energy use only; they 
do not account for the upstream energy use in terms of the 
production or transmission of electricity, refining petro-
leum or transporting products, or other inefficiencies in 
either process. As technology advances, the energy con-
sumption of both ICEVs and EVs will likely decrease, par-
ticularly in the long-term future which is the time frame 
of interest in this study. However, even in the future, the 
difference in efficiency curves will remain a vital factor. 
Lastly, this model only applies to the energy consumption 
of all-EVs, although with a different energy consumption 
model, plug-in hybrid EVs could also be represented.

Network design problem and scenario evaluation

The DIMEND model is formulated as a bi-level non-
linear mathematical programming problem. The upper 
level seeks to minimize a given objective, for example, 

(16)EC
ICEV

(v) = 14.58v−0.6258

(17)
ECEV

(
y
)
= 1.79 × 10−8v4 − 4.073 × 10−6v3 + 3.654 (1)

× 10−4v2 − 0.0109v + 0.2372 (2)

Simulator) software package (USEPA 2009). This software 
finds energy consumption and emissions production from 
vehicles based on a variety of factors including meteor-
ology, vehicle fleet composition (vehicle miles traveled 
(VMT) estimates, vehicle age distribution, vehicle popu-
lations, sales and VMT growth rates), vehicle activity, fuel 
characteristics, and emission control program data. The 
points in Figure 1(a) show the energy consumption for an 
average ICEV depending on speed obtained (using default 
data for the summer AM peak hour in Travis County) 
from MOVES. The curve was fitted to the data using the 
power regression tool in Matlab. This regression model 
is less accurate at higher speeds, when the efficiency of 
ICEVs in reality begins to decrease. Therefore, for this 
model to be applied to networks where speeds above 
75  mph are present, an adjusted energy consumption 
curve would be necessary. However, this inaccuracy does 
not impact the analysis presented in this study.

Based on the powertrain configuration, EVs consume 
energy in a different manner from ICEVs. At lower speeds 
(like what might result from congestion effects), EVs 
actually consume relatively less energy than their ICEV 
counterparts. The energy consumption model used in 
this project was based on the data obtained from (Tesla 
2012) describing the energy use of a Tesla EV in terms of 
ancillary, tires, aerodynamics, and drivetrain. Figure 1(b) 
depicts the approximated points and the polynomial 
regression curve fitted to the data using Matlab. The two 
functions used for energy consumption for ICEVs and 
EVs, respectively, are shown in Equations (16) and (17), 
where EC indicates energy consumption and v is the 
average vehicle speed on a link (calculated based on the 
link length and UE travel time). The average speed on each 
link is then multiplied by the length of the link to calculate 

Figure 1. (a) The energy consumption model for iCeVs based on MoVes2010a and (b) the energy consumption model for eVs based on 
data from Tesla.
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For the purposes of this analysis, it is assumed that EVs 
begin each trip fully charged with the same specified 
all-electric range DEV.

The link cost function tij may be any function that 
defines the relationship between the number of users trav-
eling a particular link and the cost to travel that link (e.g. 
travel time, money, emissions, etc.). The Bureau of Public 
Records (BPR) function is a common choice in both trans-
portation literature and in practice. The link cost function 
in this work when considering a design scenario swp,n ∈ S is:

 

Where for arc (i, j), tsij is the travel cost in demand sce-
nario s, t0ij is free-flow travel time (distance per time), xij 
is hourly volume (vehicles), cij is hourly capacity (vehicles 
per hour (vph)), α and β are parameters that depend on 
link geometry, ps is the capacity in vph to be added in 
project scenario swp,n, and �sij is an indicator equal to 1 if 
link (i, j) has been identified as an optimal location to add 
capacity in project scenario swp,n. Although ICEV and EV 
drivers make different route choices on account of their 
different range considerations, they still experience travel 
cost in the same way, and therefore this function applies to 
both ICEVs and EVs. The total system travel time, Ts(xij) 
is then the sum of travel cost function on each link mul-
tiplied by the flow on that link.

The total system energy consumption is the second 
metric of interest in this work. The energy consumption 
for a class of vehicles m, in a particular design scenario Em

s  
is a function of the speed vehicles travel on each link, vij, 
which is a function of network link flows. Em

s  is found by 
multiplying the energy consumption on link (i, j) (defined 
by the appropriate equation in Table 1 in kWh/mile) by the 
length of the link (i, j) in miles by the number of vehicles 
of that class on the link. The total energy consumption 
in the network is a sum of the energy consumption of all 
vehicle classes.

 

(23)tsij(x, �
s) = t0ij

⎛
⎜⎜⎝
1 + �ij

�
xsij

cij + �sijps

��ij⎞
⎟⎟⎠
,∀s ∈ S

(24)Es

(
xij, vij

)
=

∑
m∈M

∑
(i,j)∈A

EC
m
(v) × dij × xm,s

ij

total system energy consumption E or total system travel 
time T, both of which are a function of the link flow pat-
terns and capacity changes in the transportation network. 
The lower level problem represents drivers’ reactions to 
changes in the road network, represented by the DCTAP 
and TAPER subproblems.

This work focuses on ranking and evaluating design 
projects in a traffic network, although principles similar 
to those discussed here would apply to other NDP appli-
cations. Let S be a predetermined set of possible network 
design scenarios indexed by s, each of which is defined 
by the amount of capacity p from a set of possible capac-
ity additions Ps to add to each of n links from a set of 
possibilities Ns (i.e. project s1000,3 indicates the addition of 
1000 vph to 3 links) in order to minimize objective w ∈ Ω

. �sij is a binary decision variable equal to 1 if link (i, j) is an 
optimal location to add capacity in project scenario s. Note 
that links which are not available to be improved by the 
amount p ∊ PS will be constrained such that �sij = 0. This 
approach does not consider an explicit budget because 
such a decision is highly network dependent, but the com-
bination of adding p capacity to n links may be considered 
an informative proxy.

The upper level problem represents the ‘planner’s’ 
perspective, who seeks the optimal links to which to add 
capacity for each design scenario in order to minimize 
an objective swp,n. The upper level decision variables also 
impact the lower level problem, which is the multiclass UE 
model accounting for distance limitation and recharging, 
using the DCTAP or TAPER problems. For each design 
scenario swp,n, the formulation to minimize the objective 
w follows:

 

s.t.
 

 

s.t.
 

s.t.
 

(18)Minimizew =
∑
m∈M

Em
s (x, s) orTs(x, �

s)

(19)
∑
(i,j)∈A

�sij = Ns

(20)�sij ∈ {0, 1} ∀
(
i, j
)
∈ A

(21)Minimize z(x, �s) =
∑

∀(i,j)∈A

xij

∫
0

tij(�, �
s)d�

(22)DCTAP constraints or TAPER constraints

Table 1. Travel time and energy system performance metrics dis-
aggregated by vehicle class, and presented for a single design 
scenarios (2000,2) and range of eV penetration levels.

objective
ε 

(%)
ΔT

2000,2
 

(%)
ΔE

2000,2
 

(%)
ΔT

ICEV
 

(%)
ΔT

EV
 

(%)
ΔE

ICEV
 

(%)
ΔE

EV
 

(%)
T 10 11.2 7.0 11.2 11.4 7.1 0.4

50 10.9 3.0 10.9 10.9 3.2 0.8
80 14.0 −0.2 13.0 14.3 0.8 −2.3

E 10 8.5 7.2 8.5 8.6 7.4 −8.6
50 8.6 5.9 8.7 8.6 7.6 −8.1
80 8.8 3.0 8.6 8.8 8.7 −8.9
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problem. The Frank–Wolfe approach was selected here 
for its ease of implementation. Figure 3 outlines the Frank-
Wolfe method in the context of this work. The modifi-
cations include accounting for the impact of the design 
scenario chromosome ϕs.

The NDP as formulated in the previous section cannot 
be solved to a guaranteed global optimal value using stand-
ard optimization techniques because of the non-convex 
cost function (Equation (11)). Therefore, heuristic solu-
tion methods are necessary. This research applied a GA, an 
optimization technique inspired by principles of natural 
evolution. GAs provide a flexible, rigorous framework to 
solve challenging optimization problems, and are widely 
applied in a variety of real-world settings, particularly 
design problems such as water distribution systems and 
urban transit networks (Chakroborty 2003), stopping pat-
terns in passenger rail, traffic management, and numerous 
other civil infrastructure management problems.

GAs are also a well-established research method to solve 
the bi-level traffic NDP (Ferguson, Duthie, and Waller 
2012; Sun, Benekohal, and Waller 2006; Unnikrishnan and 
Lin 2012). Karoonsoontawong and Waller (2006) showed 
that in terms of heuristic approaches to solve the contin-
uous NDP, GAs perform better than simulated annealing 
or random search algorithms. A GA will correctly identify 
local extrema, but as is the case with all heuristics, the 
solution is not guaranteed to be the global optimal value. 

Finally, system performance metrics are introduced 
to rigorously evaluate the design scenarios examined 
in the DIMEND problem. The performance metrics are 
chosen to capture the impact of the design scenario on 
system-wide network conditions and to enable compari-
son between different design scenarios. The performance 
metrics capture the improvement in total system travel 
time or total system energy consumption for each design 
scenario, relative to the base case network, where there are 
no capacity additions to any link. The performance met-
rics ΔTs and ΔEs are presented in Equations (25) and (26).

 

 

The output for each design scenario swp,n are the perfor-
mance metrics ΔTs and ΔEs, and the matrix δs that iden-
tifies the optimal links for capacity additions. The UE 
problem in the lower level is solved using a Frank–Wolfe-
based linearization method. The next section describes the 
enumeration algorithm to solve the DIMEND problem, 
including the GA that was used to solve the for the optimal 
project selection in each individual design scenario.

Solution methodology

The section describes the solution methodology imple-
mented for the discrete multi-objective equilibrium NDP. 
The solution methodology includes a heuristic solution 
method to solve the bi-level network design formulated 
in (18)–(22) and (1)–(15) and the simple enumeration 
algorithm to construct and test the set of design scenarios 
S. The lower level employs a Frank–Wolfe solution method 
to solve for the equilibrium flows, Ts and Es. The solution 
method for the upper level model uses a GA to find the 
optimal set of link improvements for a design scenario δs. 
The output of the GA is the chromosome ϕs. The Frank–
Wolfe method and the GA are detailed in the following 
sections. Thus, the output for each design scenario swp,n is 
the optimal set of n links (contained within the best chro-
mosome �∗

s), and the performance metrics ΔTs and ΔEs. 
Figure 2 outlines the DIMEND enumeration algorithm. 
The advantage of this method lies in its straightforward 
implementation and evaluation, although it should be 
noted that a high number of objective function evalua-
tions will be necessary.

The Frank–Wolfe linearization method is a commonly 
employed solution approach to the traffic equilibrium 

(25)ΔTs = 1 −
Ts

T
0

(26)ΔEs = 1 −
Es

E
0

Figure 2. DiMenD scenario evaluation pseudo-algorithm.

Figure 3. outline of Frank–Wolfe solution procedure.
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GA variable representations are possible, the approach 
here was selected for its superior performance. Another 
important factor in the performance of the NSGAII (and 
all GAs) is the input parameters, which are case specific 
to any problem. As such, input settings were determined 
using sensitivity analysis and are further discussed in the 
following section.

Demonstration and analysis

This section presents the computational results and dis-
cussion regarding the DIMEND model and the solution 
method presented in previous sections. Numerical analysis 
is provided for a variant of the Nguyen–Dupius network 
(Nguyen and Dupius 1984). First, this section explore the 
implications of the TAPER routing problem and the DCTAP 
routing problem for evaluation and ranking of design sce-
narios in networks of EVs. Next, this section examines the 
policy implications of optimal project selection in a mixed 
network comprised of both ICEVs and EVs. Of interest in 
this work are the planning and policy implications of dif-
ferent vehicle technologies on the ranking and evaluation 
of network design scenarios under the presence of EVs.

The DIMEND problem is contextualized as follows: 
the network planner wishes to determine the optimal 
design scenario to improve system performance by add-
ing capacity to links in the network. A design scenario is 
defined by the design objective w, the number of links to 
which to add capacity n, and the amount of capacity to 
be added to each link p. For this demonstration, a design 
scenario swp,n ∈ S is defined by the objective w ∈ Ω:{T ,E},  
the capacity to be added to each link p ∊ Ps:{500, 1000, 
1500, 2000} (vph), and the number of projects allowed 
n ∊  Ns:{1, 2, 3, 4, 5}, resulting in a total of 40 possible 
scenarios for each fixed network state.

Additionally, there are four sets of model parameters 
that influence the optimal design scenario: the vehicle 
travel demand matrix W, EV market penetration level 
defined by the percentage of EV class vehicles in the 
network, �, the locations of charging stations V, and the 
distance constraint Dm, primarily DEV. The feasible solu-
tion space for �sij includes only links that have been pre- 
identified by the planner as being available for the specified 
capacity addition. A large population size of 100, crossover 
probability of 0.9, and mutation probability of 0.01 were 
set as the GA inputs. The GA was run for a large number 
of generations and tested with multiple random seeds in 
order to ensure that the best solution had been found.

The Nguyen–Dupius network (Figure 5) is a test 
network consisting of 13 nodes, 19 links, and 4 OD pairs. 
There are two origins (1 and 4) and two destinations 
(2 and 3), with a demand between OD pair (1,2) of 1,528, 
(1,3) of 1,840, (4,2) of 1,680, and (4,3) of 1,360. All links 

In this approach, steps taken to ensure that the GA had 
converged on the best solution.

A GA locates an optimal solution by searching for 
promising regions in which there are a high proportion 
of ‘good’ solutions. It begins with a randomly generated 
initial population of individuals that represent potential 
solutions (called chromosomes). Over ‘time,’ the popu-
lation evolves according to a natural selection process, 
in which the best individuals are selected and combined 
using a crossover technique to form new populations of 
individuals. The basic GA in the context of this work is 
outlined in Figure 4.

This work utilized both single- and multi-objective var-
iations of the nondominant sorting genetic algorithm II 
(NSGA-II) by Deb et al. (2002), using the binary encoding 
approach. NSGA-II is a well-known algorithm that has 
proven to be the best GA tool for solving multi-objective 
optimization problems, and utilizes several techniques 
that provide superior performance. See Sun, Benekohal, 
and Waller (2003), Duthie and Waller (2008), Sharma and 
Mathew (2011), and Ferguson, Duthie, and Waller (2012) 
for other examples that utilize NSGA II for various appli-
cations of the traffic NDP.

The current application utilizes the GA in a manner to 
avoid over-complication, primarily by eliminating issues 
of feasibility. Discrete variables were used to represent p, 
the capacity to be added to a link, which is an input to 
the GA. In order to avoid infeasible regions, GA variables 
were integer values that represented the link to which p 
was to be added. A chromosome ϕs contains n GA vari-
ables, each of which represents a link number to which 
to add capacity. The memory allocated to a GA variable 
was limited to the number of bits required to represent all 
links in the network 

(
i, j
)
∈ A in binary form, and there 

were no infeasible solutions. However, this does enable 
the GA to select the same link for multiple projects, i.e. 
the solution to sTSTT

500,2
= {2, 2}, resulting in the equivalent 

of 1000 vph capacity added to link 2. Constraints could 
be introduced to eliminate this possibility, but for the sake 
of simplicity, were not used here. While numerous other 

Figure 4. Ga pseudocode.
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is highly correlated with travel time. This is due to the 
complementary nature of the BPR travel time function 
and the ECICEV function, presented in Equation (16). 
However, the BPR travel time function and EVEV function 
in Equation (17) are conflicting. In Figure 6(b), as total 
travel time decreases, the total energy consumption 
increases. It is important that planners recognize this 
novel impact of EV driver behavior.

Impact of DCTAP routing on the DIMEND problem

In the DCTAP conditions, there are no charging stations 
available in the network. The feasible path set for EVs is 
determined by the length of the paths between their origin 
and destination (with no option of recharging). Figure 7 
presents the performance metrics for a set of design 
scenarios where DEV varies from 22, 23, or 24 miles. 
Five design scenarios are examined, where sT

1500,n and 
the number of projects n is varied between 1 and 5 with 
only EVs in the network (ε = 100). The horizontal axis 
identifies the specific design scenario and the vertical axis 
corresponds to the performance metrics ΔTs and ΔEs. 
The solid columns illustrate results for ΔTs and the lined 
columns represent ΔEs.

Figure 7 illustrates three main points: (i) the marginal 
improvements gained from adding an additional project, 
(ii) the relationship between that marginal improvement 
and the distance constraint DEV (and therefore technolog-
ical advances), and (iii) the contradictory behavior of the 
two performance metrics, energy and travel time improve-
ment. A greater number of projects may be reflective of a 
larger budget and thus, the difference between each pro-
ject reflects the marginal return for a greater investment. 

have an initial capacity of 2,200 vehicles per hour (vph), 
a free flow speed of 50 mph, and BPR design parameters 
α and β of 0.15 and 4, respectively.

Impact of the TAPER routing on the DIMEND 
problem

In the TAPER routing subproblem, there are charging sta-
tions in the network in which EVs will recharge en route. 
When DEV is limited, the feasible path set for EVs will be 
determined by the locations of the charging stations.

Figure 6 illustrates the results for the 20 design scenar-
ios sTn,p, where the objective w = T, DEV = 19, and V = (6, 10) 
(where charging stations imply the TAPER subproblem). 
In order to illustrate the behavioral differences in travel 
time and EV energy consumption for EVs and ICEVs, 
the results in Figure 6(a) correspond to the network com-
posed of solely ICEVs, � = 0 and the results in Figure 6(b) 
correspond to a network composed of solely EVs, ε = 100. 
These extreme cases help isolate the relationship between 
EV driver behavior and energy consumption as predicted 
by the DIMEND model. The horizontal axis identifies the 
design scenario by p and n. The vertical axis corresponds 
to ΔT and ΔE as a percentage. The lightly shaded columns 
correspond to the energy performance metric, ΔE and 
the more darkly shaded columns correspond to the travel 
time metric ΔT.

Figure 6 shows that due to the fundamentally different 
behavior of EV drivers and technology, Ts and Es are 
fundamentally conflicting in nature in EV networks 
(Figure 6(b)); whereas traditionally, the relationship 
between T and E has been very predictable (Figure 6(a)). 
In a network composed of ICEVs, energy consumption 

Figure 5. The nguyen–Dupius test network with link and node indices shown.
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implies that investment will not impact or increase total 
energy consumption.

Additionally, ΔTs and ΔEs are higher in networks where 
DEV = 22. However, investigation shows that T0 and E0 are 
also greater in a network where DEV = 22, as compared 
to networks where DEV = 23 or 24. Due to the more lim-
ited distance constraint, EVs have a smaller set of feasible 
path options, which results in high congestion and T0. 
As a result, more EVs are on the same path, so the same 
investment will have a greater impact in this situation as 
compared to the situation where EVs have a range of 23 
or 24. Additionally, the results illustrated in Figure 7 show 
that optimal project selection is dependent on the per-
ceived distance limitation of EV drivers.

Equity issues in a mixed vehicle network

Until this point, the focus has been on extreme cases of 
vehicle class composition in order to isolate different 

When n = 4 and n = 5, the network is nearing free flow 
conditions and so the difference between ΔTs is small, 
indicating a smaller marginal return. In the same scenar-
ios, ΔEs displays the same or worse performance, which 

Figure 6.  illustration of system level behavioral differences for energy consumption and travel time improvements under an (a) iCeV 
network and (b) eV network.

Figure 7.  illustration of travel time and energy system level 
performance metrics for a combination of distance constraints 
and design scenarios under the DCTap subproblem.
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For example, in terms of travel time, ICEV users may 
experience a similar travel time savings compared with 
the EV users. On the other hand, if the NDP objective 
is to minimize energy consumption, the EV users may 
end up with increased energy demands, while the energy 
consumption is reduced by over 25% for ICEV users. The 
reasoning for these results is the same as discussed in the 
section on the problem formulation, and is an outcome 
of the difference between the ICEV and the EV energy 
models.

Finally, this subsection explores a case study and poten-
tial paradox for several different levels of EV market pen-
etration. For the purposes of illustrating an important 
policy observation, we isolate the design scenario where 
p = 2000 and n = 2, and compare the two objectives, T and 
E, at penetration levels � = 10, 50, 80. The set of charging 
stations for this TAPER experiment is V  =  (6, 10, 11), 
opening up routes to EV drivers that were not available 
in the previously results in Figure 8. Note that E was not 

network behavioral implications. However, this section 
considers a range of market penetration levels and high-
lights the impact of optimal design scenarios on each 
user class individually. This analysis provides a means to 
reveal any possible inequities which may arise from a par-
ticular design scenario. For example, one design option 
may benefit some user group more than another, or in an 
extreme case, one user group may benefit while another 
group incurs a loss.

Figure 8 illustrates the results for the 20 design sce-
narios in a TAPER network where ε = 60, DEV = 14, and 
V  =  (6, 11). Again, the NDP objective is to minimize 
system travel time, T. In Figure 8, the results have been 
separated by the individual vehicle classes. The results 
presented in Figure 8 are consistent with those shown in 
previous figures regarding the trends of the performance 
metrics. However, Figure 8 also highlights the difference 
in these performance metrics across the two vehicle 
classes, specifically certain equity issues which can arise. 

Figure 8. system level performance metrics for (a) travel time and (b) energy, separated by each vehicle class and presented for various 
design scenarios when ε = 60.
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In regard to the modeling approach proposed here, 
results from the analysis reveal that design scenarios can 
impact network travel patterns in one of two ways. First, 
an improvement can lower the cost of a path such that 
it becomes more attractive to drivers, who then change 
routes, thereby causing nonlinear, unpredictable varia-
tions in system travel time. Secondly, a design scenario 
can lower the travel time on a particular path but not 
cause any route choice changes. In the second scenario, 
the impact on system travel time will change according to 
the travel cost function. In the case of this study, the mar-
ginal improvement of adding more projects decreased, but 
remained proportional between different design scenarios 
(i.e. implementing 5 projects vs. 4 projects will simply 
lower the travel time on the links). Because adding capac-
ity to transport networks is expensive, it is important to 
identify the marginal returns of an additional project, and 
more importantly, the point at which adding capacity does 
not produce sufficient returns to warrant the expenditure. 
The impact of the design scenarios on network energy 
consumption is less clear, although results presented in 
the previous section suggest that EEV is fundamentally 
conflicting with T.

Another interesting outcome of this study highlights 
equity issues which can arise in networks comprised of 
mixed vehicle classes. Based on the behavioral difference 
displayed by different user classes, it follows that user 
groups experience the impact of a given design scenario 
differently. Therefore, if planners do not model the indi-
vidual vehicle classes explicitly, the variable impacts on 
each user group will likely go unaddressed.

In conclusion, this works highlights the following 
findings:

•  EV energy consumption behaves in a different 
manner from the energy consumption of tradi-
tional ICEVs, and must be explicitly accounted for 
by network planners.

•  Depending on driver perceptions (i.e. imposed 
distance constraints based on range anxiety) and 
charging infrastructure location, different design 
scenarios rankings may result.

•  In a network comprised of both ICEVs and EVs, 
particular attention must be paid to the impact of 
design scenarios on individual user classes; exam-
ples presented here showed capacity additions can 
increase energy consumption for EVs, but signifi-
cantly lower energy consumption (and therefore 
fuel costs) for ICEVs.

As EVs become more prominent, transport network 
planners will require new research tools that account for 
the impact of this novel technology. Future research will 
expand on this study to address integral issues such as 

the objective of interest in previous cases where ε = 100 
because due to the conflicting nature of travel time and 
EV energy consumption, no design scenarios benefit-
ing energy consumption were available. However, ICEV 
energy consumption is closely correlated with travel time 
and dominates EV energy consumption. Therefore, design 
strategies targeting ΔE will be possible in the mixed net-
work case; however, they will have an unequal impact on 
different user classes.

Table 1 presents the results for the paradox experiment 
in terms of the entire system (ΔT and ΔE) and also sepa-
rated by vehicle class (ΔTm and ΔEm). The results for T are 
approximately equal for all users in the system. However, 
Table 1 reveals an important insight: in a mixed network, 
EVs almost always consume more energy due to capacity 
additions, which corresponds to a higher fuel cost that 
may impact both users and electric power companies. This 
inequality results even when the system metric ΔE indi-
cates that the design scenario is beneficial on a network 
level. Counterintuitively, this result is magnified when the 
targeted objective is minimizing energy. This outcome 
results because the total energy consumed by ICEVs 
dominates the energy consumed by EVs, even when ε is 
high. However, planners concerned about network equity 
should be aware of this possible paradox.

Discussion and conclusion

This work implemented the DIMEND problem using EVs 
and traditional ICEV to examine the policy implications 
of different strategies of network design scenarios. The 
problem was modeled using a bi-level formulation where 
the upper level was solved using a GA and the lower level 
was a multiclass UE traffic assignment model. Vehicle 
energy consumption was computed based on industry 
data for EVs and ICEVs. A number of discrete capacity 
enhancement scenarios were evaluated, and the results 
revealed the two performance measures to often be con-
flicting objectives.

As mentioned, there are two important policy issues 
with regard to design scenarios: project selection and pro-
ject performance. Project performance is estimated based 
on the model outputs. Project selection is influenced by 
the relative rankings between different design scenarios, 
based on each individual project performance. Both of 
these criteria are dependent on assumed behavior of driv-
ers, particularly of EV drivers, and on parameters such 
as the perceived distance constraint of EVs, the network 
travel demand, and the profile of vehicle classes in the 
network. This work highlights the need carefully consider 
each of these aspects and highlights the new effects created 
by the constrained routing of EVs in order to properly 
evaluate projects.
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Jiang, N., C. Xie, and S. T. Waller. 2012. “Path-Constrained 
Traffic Assignment.” Transportation Research Record: Journal 
of the Transportation Research Board 2283 (1): 25–33.

Joumard, R., M. Andre, R. Vidon, P. Tassel, and C. Pruvost. 
2000. “Influence of Driving Cycles on Unit Emissions from 
Passenger Cars.” Atmospheric Environment 34: 4621–4628.

demand and capacity uncertainty. In addition dynamic 
traffic assignment will be incorporated into the subprob-
lem to provide a more accurate appraisal of energy con-
sumption, particularly by accounting for the dynamics 
of vehicle flow and energy use. Lastly, forthcoming data 
on the expected penetration rates of EVs by region can 
be incorporated into the model to quantify the spatio-
temporal energy demands generated for a realistic mix 
of EVs and ICEVs, an essential component for regional 
energy providers.
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