
2/12/2019 Inferring the risk factors behind the geographical spread and transmission of Zika in the Americas

https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0006194 1/16

bstract
ackground

n unprecedented Zika virus epidemic occurred in the Americas during 2015-2016. The size of the epidemic in conjunction with
ewly recognized health risks associated with the virus attracted significant attention across the research community. Our study
omplements several recent studies which have mapped epidemiological elements of Zika, by introducing a newly proposed
ethodology to simultaneously estimate the contribution of various risk factors for geographic spread resulting in local transmission
nd to compute the risk of spread (or re-introductions) between each pair of regions. The focus of our analysis is on the Americas,
here the set of regions includes all countries, overseas territories, and the states of the US.

ethodology/Principal findings

e present a novel application of the Generalized Inverse Infection Model (GIIM). The GIIM model uses real observations from the
utbreak and seeks to estimate the risk factors driving transmission. The observations are derived from the dates of reported local

ransmission of Zika virus in each region, the network structure is defined by the passenger air travel movements between all pairs
f regions, and the risk factors considered include regional socioeconomic factors, vector habitat suitability, travel volumes, and
pidemiological data. The GIIM relies on a multi-agent based optimization method to estimate the parameters, and utilizes a data
riven stochastic-dynamic epidemic model for evaluation. As expected, we found that mosquito abundance, incidence rate at the
rigin region, and human population density are risk factors for Zika virus transmission and spread. Surprisingly, air passenger
olume was less impactful, and the most significant factor was (a negative relationship with) the regional gross domestic product
GDP) per capita.

onclusions/Significance

ur model generates country level exportation and importation risk profiles over the course of the epidemic and provides
uantitative estimates for the likelihood of introduced Zika virus resulting in local transmission, between all origin-destination travel
airs in the Americas. Our findings indicate that local vector control, rather than travel restrictions, will be more effective at reducing

he risks of Zika virus transmission and establishment. Moreover, the inverse relationship between Zika virus transmission and GDP
uggests that Zika cases are more likely to occur in regions where people cannot afford to protect themselves from mosquitoes.
he modeling framework is not specific for Zika virus, and could easily be employed for other vector-borne pathogens with sufficient
pidemiological and entomological data.

uthor summary
ince May 2015, when Zika was first reported in Brazil, the virus has spread to over 60 countries and territories, and imported
ases of Zika have been increasingly reported worldwide. However, there is still much uncertainty behind the mechanisms which
ictated the rapid emergence of the epidemic. This work introduces a novel modeling framework to improve our understanding of

he risk factors which contributed to the geographic spread and local transmission of Zika during the 2015-2016 epidemic in the
mericas. The model is informed by data on regional socioeconomic factors, mosquito abundance, travel volumes, and
pidemiological data. As expected, our results indicate that increased presence of mosquitoes, human hosts, and viruses increase

he risk for mosquito-borne virus transmission. Passenger air travel, however, was less impactful, suggesting that travel restrictions
ill have minimal impact on controlling similar epidemics. Importantly, we found that a lower regional GDP was the best predictor of
ika virus transmission, suggesting that Zika is primarily a disease of poverty.
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Introduction
rior to 2015, local cases of Zika virus had only been reported in Africa and Asia, most prominently in the Pacific Islands [1].
hylogenetic analysis suggest the virus was introduced into the Americas as early as 2013 [2, 3], but it was not detected in Brazil
ntil May 2015. By this time, Zika virus had already silently spread throughout most of the Americas [3, 4]. As of 2016, local Zika
irus transmission has been established in over 60 countries and territories, with the number of estimated cases exceeding 750
housand [5]. Zika virus infection typically presents with mild flu like symptoms, and in many cases the infection is asymptomatic.
owever, the potential harm posed by Zika is now known to be substantially greater since it has been associated with a rare
ongenital disease, microcephaly [6–13], and Guillain-Barre syndrome [13]. The unprecedented size of the outbreak and links to
evere disease prompted the WHO to declare the current Zika virus outbreak a public health emergency of international concern
14]. The emergency status lasted until November 2016, at which point Zika virus was recognized to remain a significant enduring
ublic health challenge [15].

ike dengue and chikungunya, Zika is a vector-borne virus primarily transmitted by Aedes aegypti [16–22]. Geographic spread of
he viruses occurs through global transport systems, such as passenger air travel, cruises, and maritime freight, where infected
ravelers depart affected regions for destinations where competent vector species have established populations [2, 23–26]. The
umbers of recent travel-related Zika cases diagnosed around the world (e.g., United States, Europe, Australia, New Zealand and
hina) [27] demonstrates how these networks facilitate virus emergence in new areas. It is not always clear, however, what factors
re necessary for successful establishment and outbreaks. For example, in many countries, imported cases did not result in local

ransmission, while phylogenetic analysis shows that some regional outbreaks were initiated by multiple Zika virus introductions [3,
, 24, 28].

he objective of our work is to better understand the risk factors which contributed to the spread of Zika virus during the 2015-2016
pidemic in the Americas. Our work complements and builds upon several recent studies investigating the potential spread of Zika

into new regions by utilizing a substantially different framework. Monaghan et. al. [29] overlaid simulated Ae. aegypti and Ae.
lbopictus mosquito abundances, travel capacities, and socioeconomic factors to estimate the cities in the United States with the
ighest expected cases of travel-imported Zika. In two studies, Bogoch et. al. [30, 31] presented the potential for Zika virus spread

into the rest of the Americas, Africa, and the Asia Pacific region using air travel and vector abundance risk maps. Nah et. al. [32]
sed survival analysis and publicly available epidemiological and air travel data to predict the risk of importation and local

ransmission of Zika virus at the country level. Zhang et. al. [33] applied a stochastic epidemic model to simulate the spatiotemporal
pread of the virus at a global scale, and estimated both the number of Zika infections and microcephaly for several countries in the
mericas. Ogden et. al. [34] demonstrated that risk to travelers in Zika virus affected countries correlates with estimates of R0 using
uman case surveillance data. Others have also estimated R0 to assess transmission risk across a variety of environments [35–
7]. We previously mapped the variations in the geographic risk profile under different assumptions of vector species capacities for
ika virus transmission [38], and illustrated the geographic spread of Zika virus to be driven primarily by Ae. aegypti [39]. In
ollaboration with a large international research team, we also analyzed sequenced Zika virus genomes, reported cases, mosquito
bundance, and travel patterns to track the spread of the epidemic (i.e., genomic epidemiology) [3, 4, 24].

he proposed methodology we present in this paper is what we refer to as the Generalized Inverse Infection Model (GIIM), initially
introduced in [40], and further expanded upon in [41]. GIIM is a network optimization model originally designed for static

nvironments, which we extended to a dynamic framework. Here, we define the network structure by the passenger air travel
ovements between all pairs of regions in the Americas. For each region, we provide the model data regarding socioeconomic

actors, available health infrastructure, vector habitat suitability, passenger air travel, and reported Zika case numbers. Our model
stimates the relative contribution of each risk factor in the spread and local transmission of Zika virus using a multi-agent based
ptimization search method to estimate the parameters of a link risk function. Specifically, our results provide quantitative time-
ependent estimates for the likelihood of Zika virus spreading between regions, resulting in local transmission at the destination. At
 regional level, exportation, and importation risk profiles are also provided. The risk function parameters are estimated through

iterative refinement, the direction of which is driven by an error function between predicted and observed properties of an infection
rocess, similar to what we previously implemented for dengue virus [25]. Our results indicate that the most common transmission
outes were to countries with some of the lowest gross domestic product (GDP) per capita in the Western Hemisphere [42].
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he proposed model is evaluated at a country level, and therefore dependent on country level data for input. The socioeconomic
ata, epidemiological data, travel data, and vector suitability data for the principle spreading vectors species are all aggregated to

he country level for all countries and territories in the Americas as well as the individual U.S. States. Each variable considered in
he model is described in further detail below. All data that we can make publicly available are listed in S1 Data.

pidemiological data.

e collected the weekly suspected and confirmed Zika cases from each each country and territory in the Americas from the Pan
merican Health Organization (PAHO) [43], as we previously described [24] (data available: github.com/andersen-lab/Zika-cases-
AHO). Here, we aggregated case to the monthly level for use in our model (Fig 1). The monthly country level case counts were
ivided by each country population to compute incidence rates for use in the analysis. We chose to use incidence rates (Fig 1B)
ather than case counts in the model, as incidence rates more accurately capture the likelihood of an individual traveler being

infected.

Fig 1. Reported suspected and confirmed Zika cases in the Americas.
Monthly distribution of reported (A) Zika cases and (B) Zika incidence rates for 15 countries and territories during the 2015-
2016 epidemic (listed in descending order of incidence rates). (C) The number of countries and territories reporting local Zika
cases per month. (D) The total number of Zika cases reported in the Americas per month and cumulatively during the
epidemic.
https://doi.org/10.1371/journal.pntd.0006194.g001

lthough the first Zika cases were reported in Brazil in May 2015, no case data is available for all of 2015 from PAHO because Zika
ases and associated neurological and congenital syndrome were not made notifiable conditions by the Brazil Ministry of Health
ntil 17 February of 2016 [43]. Given the lack of case data yet confirmed circulation of Zika in Brazil, we estimated the number of
eported cases from July to December 2015 to increase proportionally to the monthly suitability during that time period, and
alculated the values as a function of the reported January 2016 case counts. This approach was selected based on the positive
orrelation between Ae. aegypti abundance and reported case counts in Brazil [2].

ravel data.

he network upon which the model is implemented is built using passenger air travel data from the International Air Transport
ssociation (IATA), which included origin, destination and stopover airports for all routes, as well as the calibrated passenger travel
olumes for each route in the world at a monthly timescale, and represented in Fig 2. The raw airport level data is aggregated to a
egional network for the purposes of this study, which includes individual U.S. states, countries, and overseas territories in the
mericas. The U.S. states were modeled individually due to the large heterogeneity amongst them, mainly regarding travel
atterns, environmental conditions and reported Zika cases. The route-specific passenger travel volumes supplied by IATA were
alibrated based on data from 240 airlines comprising 84% of global air traffic, and includes over 3400 airports. The passenger
olumes were available at a monthly temporal resolution, which match the temporal resolution of the model. The transportation data
sed in this paper were limited to air passenger travel volumes and did not include cargo flights. For this study, we only used routes
riginating in regions with reported Zika virus transmission. We also did not include arrivals into Brazil because we were

investigating the risk factors associated with Zika virus spread starting from this region. The analysis was done using flight paths
nd travel volumes for all routes in 2015. These were the most recent data available for this annual period at the time of analysis,
nd previously used in [39].

https://doi.org/10.1371/journal.pntd.0006194.g001
https://journals.plos.org/plosntds/article/figure/image?size=medium&id=info:doi/10.1371/journal.pntd.0006194.g001
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Fig 2. International air passenger travel used to construct the Zika virus epidemic model network.
Passenger air travel from regions that reported Zika virus transmission was used to construct a network for potential
international virus spread from the epidemic origin, Brazil (pink). The monthly travel volumes were normalized to fit between 0
and 1 and summed across the 18 month study period. The color gradient represents the relative arrival volumes at each
destination. The weighted lines represent the travel volumes along each route with the thicker end pointing towards the
destination. The travel routes connect region centroids, not specific air ports. We only used departing flights from Brazil (pink).
The maps were generated using open source shape files from Natural Earth (http://www.naturalearthdata.com/).
https://doi.org/10.1371/journal.pntd.0006194.g002

osquito suitability models.

he risk for local Zika virus transmission depends fundamentally on the presence of vector mosquito species, which is a function of
nvironmental suitability. A quantitative relative measure of suitability defines the relative ecological risk for mosquito-borne

ransmission [44–46]. If the ecological risk is low, local transmission of Zika virus is highly unlikely. If the risk is high, then other
actors, such as the the size of the founder vector population and the availability of hosts, become critical for local outbreaks.

his analysis is partially based on habitat suitability for the principal Zika virus vector species, Ae. aegypti. The monthly vector
uitability data sets are based on the original high resolution maps that we previously developed [47] and used elsewhere [3]. We
xtended our estimates to account for seasonal variation in the geographical distribution of Ae. aegypti by using monthly time-
arying covariate data including temperature persistence, relative humidity, and precipitation, as well as static covariates such as
rban versus rural land use. The newly computed monthly suitability values were rescaled so that the sum of all monthly maps
qualed the annual mean. Maps were produced at a 5-km × 5-km resolution for each calendar month and then aggregated to the

level of the U.S. states and countries and territories used in this study. These expectations define the relative ecological risk for Zika
irus transmission in each cell. Both the mean and standard deviation of the monthly suitability are considered in this study. Fig 3

illustrates an example of the annual fluctuation in suitability by month for four of the countries most impacted by Zika. The effect of
easonality is evident for all countries by the peaks in summer and troughs in winter; the line for Brazil is shifted, due to the
ifference in seasonality in the southern hemisphere. The figure also illustrates the geographical distribution of mean relative Ae.
egypti suitability during periods of Zika virus transmission in the Southern and Northern Hemispheres (Fig 1B, January and
ugust, respectively).

http://www.naturalearthdata.com/
https://doi.org/10.1371/journal.pntd.0006194.g002
https://journals.plos.org/plosntds/article/figure/image?size=medium&id=info:doi/10.1371/journal.pntd.0006194.g002
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Fig 3. Seasonal and geographical dynamics of Aedes aegypti suitability.
(A) Monthly mean and standard deviation of relative Ae. aegypti suitability for four prominent countries with known local Zika
virus transmission. (B) Geographical distribution of mean relative Ae. aegypti suitability during periods of Zika virus
transmission in the Southern and Northern Hemispheres (January and August, respectively). The maps were generated using
open source shape files from Natural Earth (http://www.naturalearthdata.com/).
https://doi.org/10.1371/journal.pntd.0006194.g003

he level of spatial aggregation in the model requires the use of the an average regional suitability value. For some large regions
ith high variability in environmental conditions and landscape, a mean value is not necessarily appropriate. For this reason we
xplored the inclusion of the standard deviation of suitability for each region as an additional attribute to capture the existence of
igh suitability “hot spots”, and thus, still pose a potential risk for transmission even when overall suitability is relative low. However,

he variable was excluded in the final analysis because of its poor performance, likely due to the low variability of suitability in many
f the smaller Caribbean Islands, where Zika virus was quite prevalent.

ocioeconomic and human population data.

 country’s ability to implement a successful surveillance and vector control programs are critical components to preventing and/or
anaging an outbreak (if introduced). There is no globally available data to quantify vector control at the country level, therefore
lternative economic status and health related indicators were chosen to act as a proxy for available control resources. Economic
evelopment is measured by the GDP converted to international dollars using purchasing power parity rates and divided by total
opulation (GDP PPP per capita). GDP data was collected from Worldbank [42] and the U.S. Bureau of Economic Analysis [48],
nd illustrated in Fig 4. The two variables selected to represent the availability of health infrastructure are: 1) the number of hospital
eds and 2) the number of physicians per 10,000 people. Health indicators for the U.S. were collected from the Centers of Disease
ontrol and Prevention (CDC) [49], and data for most regions in the Americas was collected from the WHO World Health Statistics

eport [50] and from the PAHO [51].

Fig 4. Regional variability in socioeconomic and human population data in the Americas.
Regional values for (A) gross domestic product (GDP) purchasing power parity rates per capita and (B) human population
densities (people per sq. km of land area) used in the models. The boxes show zoomed in views of the Caribbean Islands.
The maps were generated using open source shape files from Natural Earth (http://www.naturalearthdata.com/).
https://doi.org/10.1371/journal.pntd.0006194.g004

http://www.naturalearthdata.com/
https://doi.org/10.1371/journal.pntd.0006194.g003
http://www.naturalearthdata.com/
https://doi.org/10.1371/journal.pntd.0006194.g004
https://journals.plos.org/plosntds/article/figure/image?size=medium&id=info:doi/10.1371/journal.pntd.0006194.g003
https://journals.plos.org/plosntds/article/figure/image?size=medium&id=info:doi/10.1371/journal.pntd.0006194.g004
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uman population densities (people per sq. km of land area) for each region were collected from Worldbank [52] and the U.S.
ureau of Economic Analysis [48] (Fig 4B).

aps presenting geographical data.

he maps presented in our figures were generated using open source shape files from Natural Earth
http://www.naturalearthdata.com/), and rendered using Matplotlib [53]. The software and basemaps are open source and freely
vailable to anyone.

ethod
or the purpose of estimating the risk of Zika virus spread and local transmission in the Americas, we expand upon a previously
eveloped method based on the GIIM [40, 41]. The GIIM model is referred to as an inverse infection model because, instead of
ttempting to simulate an infection process directly, it uses observations from an actual outbreak on a network and seeks to
stimate the parameters of this process, e.g., transmission probability functions on the links of the network. This objective is
omplementary to a related problem which seeks to infer the set of links most likely responsible for explaining an observed
ransmission process [54–56]. To accomplish the prescribed task, GIIM relies on information such as the status of confirmed local
ransmission for each node (or a subest of nodes) in the network, as well as the structure and properties of the network itself. The
ransmission status is used as a reference point, and GIIM sets the edge weights such that the underlying stochastic simulation
odel replicates the actual outbreak scale as closely as possible, i.e., GIIM seeks to minimize the error between the observed and

eference point. The GIIM model was originally designed for static environments, and is extended to handle dynamic inputs of the
pplication proposed in this work. Both the original model and the extensions are discussed in detail in this section.

odel inputs

he inputs for the GIIM consist of the underlying network structure, attributes of both the nodes and links of the network, and
bservations on the actual transmission process. In this work the network structure is defined by the passenger air travel
ovements between regions in the Americas. We denote graph G as G(V, E), where V  is a set containing all the vertices of the
raph, while E  contains all the edges of the graph. Edges are denoted as e , where u is the source and v is the destination of a

ravel route represented by the edge. In this paper, V  contains all countries in the Americas, the French, Dutch, British and
merican overseas territories, and the individual states of the US, which also defines the spatial resolution of the model. The

emporal resolution of the model implemented in this work is at a monthly level, which corresponds to the available travel and
uitability data. The edges of the graph exists between a pair of regions if there were passenger air travel movements between
hem during any month in 2015. The travel patterns between countries is asymmetric, therefore the resulting graph is directed. We
enote this graph as G .

e assign a number of attributes to the vertices and edges of the graph to capture the potential risk factors that may influence the
egional spread of Zika virus over time. These attributes correspond to the variables described in the data section. The attributes
ake the form of normalized real values between zero and one, and include the following:

1.  denotes the normalized monthly passenger air travel volume between regions u and v, where u is the origin and v is the destination, and t is the month.

2.  denotes the Zika incidence rates computed from (suspected and confirmed) cases reported at each month t in the origin region u, and the population at the
origin.

3.  denotes the average monthly suitability value for Ae. aegypti at the destination v, for month t.

4.  denotes the standard deviation (STD) of monthly suitability value for Ae. aegypti at the destination v, for month t.

5. E  denotes the normalized GDP on purchasing power parity (GDP PPP) at the destination v.

6. H  denotes the normalized health indicator at the destination region v.

7. P  denotes the population density of the destination region v.

 subset of the attributes are dynamic, i.e. their value changes over time, and therefore are denoted with an additional time index, t.
he dynamic attributes include the passenger volumes, the incidence rates in each region, and the vector suitability. The monthly
irport travel volumes, , are aggregated to the state and country level. The mean and standard deviation of the vector suitability

or each region for each month is computed as described in the data section. The remaining attributes are static, and are assumed
ot to vary over the course of the year.

he GIIM defines a transmission model on the input graph. Graph-based transmission models require a real value 
o be present on all edges of the graph, these are called edge transmission probabilities. In this application of the GIIM, the
ttributes are incorporated into a functional form to represent each time-dependent edge transmission probability. The function

akes the form as shown below:

(1)

he variables in the function correspond to the set of attributes previously listed, and the coefficients of each attribute are the
arameters to be estimated by the model. Values  are bounded between 0 and 1. We will denote the surjective assignment of
dge transmission probabilities to the edges as .

G
G u,v

G

A

v

v

v

http://www.naturalearthdata.com/
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In addition to the network attributes, GIIM requires a reference observation of the real-life transmission process it seeks to estimate.
In the current application, the observation used is the date of the first reported local Zika cases in each region for the time period
onsidered. The reference point is therefore given as a set of 18 binary vectors; each binary vector corresponds to a month of the
bserved Zika virus outbreak starting from July 2015 to December 2016, and assigns a value of 0 or 1 to each node of the graph

indicating its transmission state. A value of 1 indicates that the presence of local transmission of Zika virus in the region was
eported within or before the corresponding month, and a value 0 indicates that Zika cases have yet to be reported from the region.

tochastic simulation model

he GIIM relies on an underlying stochastic simulation to model the spreading process. The compartmental model that is used in
his paper is the SI model, which has two states: susceptible (S) and infected (I). The graph-based SI infection model is an iterative
iscrete-time model that assigns states to the nodes of the graph: each node can only be in a single state at any time step, and all
odes must have a state at all times. While GIIM can accommodate a more complex compartmental model, e.g., SEIR, the SI
odel is selected to fit the Zika virus application based on the assumption that once Zika virus becomes locally established, that

egion remains a potential risk of furthering the spread of the virus for the time frame being considered. The reason for allowing the
ption of non-zero outgoing risk after the reported case count reduced to zero is that there could still be infected individuals in the
egion, especially given the high rate of asymptomatic cases and reporting error. However, it is important to note that the use of the
I model does not enforce a region to have a positive transmission probability over the entire period modeled, it simply allows a
on-zero transmission risk value to be estimated by the model. The actual time-dependent transmission probability is defined as a

unction of the incidence rate at the origin country among other factors; a probability of zero is a feasible solution of the model, and
is actually assigned to many of the links over the course of the outbreak. Given the estimated transmission probabilities, in each
tep of the simulation, “infected” nodes try to “infect” all their susceptible neighbors according to the transmission probability w
onnecting them. If the attempt is successful, the neighbor will be infected in the following iterations. If the attempt is unsuccessful,
he neighbor remains in a susceptible state, and the infected node can continue to make attempts in the following iterations
indefinitely.

ore formally, the transmission process starts from an initially infected set of nodes  at iteration t . The rest of the nodes 
 are susceptible at the beginning of the process. Let  be the set of infected nodes at iteration i. At each iteration, t,

ach node u ∈ A  tries to infect each susceptible neighbor  according to the probability . If the attempt is
uccessful, v becomes infected starting from the following iteration: v ∈ A . If more than one node is trying to infect v in the same

iteration, the attempts are made independently of each other in an arbitrary order within the same iteration. By definition, the
ransmission process stops at iteration t if . Since we only simulate a finite portion of the Zika virus epidemic, we stop all
ransmission models after 18 iterations, corresponding to the observed months of the epidemic at the time of analysis.

ithin each model run, the transmission process is repeated 10000 times to produce a real value indicating the likelihood of each
ode being in an infectious states at each iteration, t. The value is calculated by counting the number of repetitions when nodes
ere in an infectious state, and dividing by the total number of repetitions i. e.10000.

eneralized inverse infection model solution methodology

he GIIM [41] implemented in this work formulates the estimation of edge transmission probabilities as a general optimization task.
he model relies on knowledge of the underlying graph and (at least a subset of) observations from a transmission process taking
lace on the network. The real observations take the form , where  is a binary vector and t is a time stamp. Each vector
epresents a point in time and  assigns a binary value to all  indicating the observed transmission (or lack there of) of Zika
irus in the region at time t. Set O contains all observations, while set T contains all sample times, i.e. |O| = |T| = 18.

he inputs of GIIM are: an unweighted graph G, a transmission model , the set of sample times T, and the set of observations O,
here . In this work  is the SI stochastic simulation transmission model defined in the previous subsection, W :

 ↦ [0, 1] is the unknown weight assignment, and Inf is a procedure that generates observations at sample times T based on
ransmission process  taking place on graph G with assigned edge weights w  ∈ W, e ∈ E(G). The set of observations, O′, is a
ime-dependent vector of real values equal to the probability each node is infected at each timestep, computed from the set of runs.
he task of GIIM is to find an estimation W′ of W so that the difference between O and  is minimal. Due to the
eed to compare a set of binary vectors with a set of real vectors, we compare observations O and O′ using ROC evaluation by
airwise comparing vectors  and  for i = 1…18, computing the AUC value for each pair and averaging over all pairs.

he formal definition of the GIIM is as follows:

eneral Inverse Infection Model: Given an unweighted graph G, and transmission model , the set of sample times T and
bservations , we seek the edge transmission probability assignment W′ such that the difference between O and 

 is minimal.

he GIIM defines the estimation of W as an optimization problem, which is solved using an iterative refinement algorithm. The
rocedure begins with an initial weight configuration , runs transmission model , makes observations O′ and computes the
rror between O and O′. Based on the error, W′ is refined and the process is repeated, until the error becomes less than an
ccuracy constant a selected by the user. The search strategy used in this paper is the Particle Swarm Optimization (PSO) method

57]. According to the findings in [41], the method is stable and is able to produce outputs close to the reference, and therefore the
olution method chosen for this work as well. It can also be implemented in a parallel environment speeding up computations
onsiderably. Algorithm 1 summarizes the iterative GIIM algorithm.

lgorithm 1 Generalized Inverse Infection Model

: Inputs: , , , , 

e

0

i
i+1

G
G

e
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: Choose initial edge infection probability assignment 

: repeat

:  Compute 

:  Compute 

:  if  then

:   return 

:  else

:   Choose new  according to the PSO search strategy.

0:  end if

ynamic extension of general inverse infection model

 major modification was necessary in order to adapt the GIIM method to be applied in the context proposed here. The original
IIM method estimates the edge transmission values of the graph directly as real values that are static, i.e., they do not change
ver time [41]. In this work the edge weights are given as functions of known attributes on the nodes and edges of the graph, and

he task becomes the estimation of these functions, or more specifically, the coefficients of these functions. Several attributes in this
pplication are dynamic, i.e., they change with time. Thus, it is necessary to further extend the function estimation method to
ccount for dynamic attributes, and to adapt the simulation model to handle dynamic edge transmission values.

In this work the edge transmission values are defined using a linear function of known attributes, as defined in eq (1). More
enerally, if  is the set of attributes, where i represents the i-th attribute and t represents the time period, then the time-
ependent edge transmission probabilities  are given as  for all , where ℓ

is the number of available attributes, f , …, f  and g are functions and  are coefficients of functions f , …, f , g. Following
he notation proposed in [41], the functions used to compute the edge transmission probabilities are given as a set of attribute
unctions f , …, f  assigned to each invididual attribute, an aggregator function g with the role of creating a single value from the
esult of the attribute functions and a normalization function ensuring that the result falls between 0 and 1. This formulation makes

implementation of the method easy while retaining the flexibility of the model. Let C denote the set of all coefficient vectors. The
alues of the attributes can change over time, however the functional form and estimated coefficients are assumed to remain
onstant over the time period examined.

he optimization process of GIIM changes from the estimation of the direct weight assignment W to the estimation of C. This
rovides a means to identify the key factors contributing to the spread of Zika virus throughout the regions in the Americas. A
econd advantage is technical; |C|<< |W|, therefore the optimization process is much easier because we are only looking for a

limited number of function coefficients as opposed to the edge transmission probabilities for all edges of the graph. For the
implementation of the model in this paper, all parameters are bounded between -0.5 and 0.5, in order to reduce the solution space
or the PSO method. Finally, the resulting edge transmission values are trimmed above 1 and below zero by taking 

.

esults and discussion
y the time Zika virus was first detected in Brazil in May, 2015, the virus had already rapidly spread to most regions of the Americas

3, 4]. The goals of our analyses were 1) to identify the relative contribution of each risk factor in the spread and local outbreaks of
ika virus and 2) to compute the risk of spread (or re-introductions) between each pair of regions during 2016. We aggregated the

oute level risks to provide a relative ranking of total importation and exportation risk posed by and to each region per month during
he outbreak. Our final network, representing feasible air travel routes in the Americas, is a directed, weighted graph structure with
03 nodes and 2946 edges.

stimated contribution of risk factors

he first task of our study is to identify the set of attributes (and corresponding contribution of each) to be included in the model. We
onsider the entire set of attributes previously presented in the data section. A linear weighted sum function as defined in eq (1) is
sed to compute transmission probabilities, and the dynamic GIIM method is implemented to estimate the coefficients of the

unction. Different variable configurations were considered, and the model that produced the best fit was selected. The model fit is
ased on the quantifiable performance metric, ROC AUC averaged over the entire time period. To evaluate and ensure stability of

he proposed estimation method, we ran the algorithm 20 times with the same set of inputs and computed the mean and variance
f the estimated model coefficients over all runs. The results of the final model are presented in Fig 5.

(2)

1 ℓ 1 ℓ

1 ℓ
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Fig 5. Estimated risk factors for Zika virus transmission and spread.
(A) The mean and standard deviation of the model coefficients estimated across 20 runs. The estimated coefficients represent
the relative contributions of each risk factor. (B) The model performance mean and standard deviation values for each month
of the observations period.
https://doi.org/10.1371/journal.pntd.0006194.g005

he results of the model are highly robust. The estimated coefficients vary minimally across runs, and, more significantly, the
anking of all risk factors remained consistent across all runs (Fig 5A). The expected value of the estimated coefficients represent
he relative influence of each attribute in the risk of Zika virus spread between a pair of regions. When interpreting these coefficients
it is important to first note that this model is designed to estimate the risk of Zika virus spread between two regions resulting in local,
ector-borne transmission. This is different from the risk of Zika infected passenger arrivals. For example, there are multiple

locations where travel cases of Zika were continually reported, yet no local cases resulted [27]. The lack of local transmission in
hese examples could be due to many explanations, including insufficient populations of competent vectors and/or intense
urveillance and vector control programs implemented at the destination. Thus, a high number of travel-reported cases does not
ecessarily translate to a high local transmission risk, and for this reason, the risk of Zika infected passenger arrivals and local

ransmission risk should be modeled separately. Due to the potential harm posed by local outbreaks of Zika, local transmission risk
is the primary focus our analyses.

he important distinction between modeling travel-reported cases and local transmission risk is perhaps most evident from the low
oefficient estimated for travel volume. In fact, we found infected travelers to be significantly less influential than all the other risk
actors. This can be explained by the fact that there is a high level of connectivity between most pairs of regions, and more
importantly, the highest volume of air travel exists between and within the U.S. states. Yet, with the exception of Florida [24] and
exas [58], Zika was not broadly established in the U.S. Thus, we do not identify travel volume to be a driving forces in the spread
nd transmission of Zika virus in the Americas; travel is a necessary, but not sufficient condition. It is worth noting that a model
eeking to estimate the risk of infected passenger arrivals alone would likely find this variable to play much more substantial roles.

In contrast, we found that Zika virus spread and local transmission is largely driven by regional attributes at the origin (incidence
ate) and destination: Ae. aegypti suitability, human population density, and the GDP, with GDP being the most significant (Fig 5A).
s expected, a higher incidence rate at the travel origin, which can act as a proxy for the likelihood of an infected individual arriving
t the destination, significantly increases the risk posed to the travel destination. Similarly, the results indicate a higher vector
uitability at the destination corresponds to an increased risk of transmission. High human population density at the destination is
lso revealed to increase the risk of transmission, consistent with the required presence of both vectors and hosts for mosquito-
orne virus transmission. The health indicator variables were excluded from the final model, as they were not found to have a
ignificant impact.

ased on our model results, the most dominant and only negative risk factor is a region’s GDP, i.e., a higher GDP at the destination
orresponds to a lower risk of transmission. Based on the magnitude of the coefficient, the destination’s GDP contributes more than
ny other risk factor considered. The highly negative coefficient of GDP can be explained by the substantial delay (or complete

lack) of local transmission in the wealthier U.S. states and certain territories and islands in the Caribbean. GDP is obviously not
irectly involved in Zika virus transmission, but it may indirectly influence the interactions between components of the cycle: hosts
nd vectors. Poorer nations likely have lower housing qualities and inhabitants may be exposed to more mosquito bites, e.g., a lack
f screens on windows and doors allowing mosquitoes to enter. They may also have more debris around their homes acting as
reeding containers for Ae. aegypti. Lastly, GDP may be a proxy for the available surveillance and vector control resources at the
estination, an increase of which would aid in reducing local transmission.

ur final model captures the relative contribution of both static and dynamic risk factors to explain the spread and local
ransmission of Zika virus in the Americas. The AUC ROC for this model averaged over the 18 months is 0.923, which indicates an
xcellent fit (Fig 5B). For the first month we see perfect classification, since the epidemic was only reported in Brazil, which proves

rivial for the estimation method. The second half of 2015 corresponds to a major increase in the number of regions reporting local
ransmission (as illustrated in Fig 1). Specifically, between November and December the number of regions reporting transmission

https://doi.org/10.1371/journal.pntd.0006194.g005
https://journals.plos.org/plosntds/article/figure/image?size=medium&id=info:doi/10.1371/journal.pntd.0006194.g005
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early doubled from 9 to 16, and then increased to 32 in January. This proved to be the most challenging part of the estimation
rocess, and the reason for the performance drop below 0.9 during the period from October to January. The minimum AUC value of
.83 occurred in November 2015, which is still considered to be good performance for any classifier. The estimation task gets
asier again for the last 9 month characterized by a low but constant rate of spreading between the regions, and performance goes
round 0.95 again for these months. We can conclude, that even though sudden bursts in the reported local outbreaks decrease
rediction accuracy slightly, the method is able to provide accurate estimation. The estimation process took between 3 to 4 hours
ith the number of iterations between 250 and 350. A parallel version of the algorithm was implemented in C++, and the results
ere computed on a PC with an 4-core i7-7700k 4,2 GHz processor.

oute level risk

sing the final estimated model, we computed the probability of Zika virus spread between any pair of regions in the Americas
esulting in subsequent local transmission (Fig 6). The link probabilities reveal the highest risk travel routes connecting regions at
iscrete points in time over the outbreak, as well as how the relative ranking changes over time (Fig 6A). Out of the 2946 feasible
dges in the network, only 711 edges have nonzero transmission probabilities, and only 58 of the edges has a value greater than
% at any point of the observation period. The time-dependent data for the top 100 transmission links, exportation risk, and

importation risk are provided in S1 Data.

Fig 6. Temporal and regional risks for Zika virus introductions and transmission.
(A) The temporal probabilities for Zika virus introductions via infected travelers and establishment of local transmssion are
shown for 10 links, listed as origin-destination (rank). Relative risk profiles for temporal and regional Zika virus (B)
exportations and (C) introductions were estimated using the network-level transmission probabilities (top 5 ranked regions
shown for each). (D) Geographic variation in relative Zika virus importation risk for June, 2016. All Zika virus transmission
data can be found in S1 Data. The maps were generated using open source shape files from Natural Earth
(http://www.naturalearthdata.com/).
https://doi.org/10.1371/journal.pntd.0006194.g006

In general, the high risk travel routes are dominated by ones outbound from the Caribbean Islands with the highest incidence rates
earlier in the outbreak), and pointing to the less developed countries and territories of the Caribbean and Central America. These
esults are corroborated by the early estimated introduction times into countries like Haiti and Honduras relative to Puerto Rico,
exico, and the U.S. [3, 4, 24], see also www.nextstrain.org/zika. The risk on routes departing a given country, e.g., Brazil, behave

imilarly, but vary in magnitude. They also display different behavior than the outgoing risk posed by other high risk countries, e.g.,
artinique. The estimated transmission probabilities fluctuate over time due to changes in the dynamic attributes at both the route
rigins (outbreak scale) and destination (vector suitability), as well as variations in the monthly travel volumes between regions. The
ffect of these risk factors, for example, the lower Zika incidence rates in Puerto Rico relative to Martinique (Fig 1B), is illustrated by

he corresponding temporal differences in transmission risk into Haiti (Fig 6A).

he route level risk can be aggregated to provide import and export risk profiles at a regional level. This type of spatial and time-
ependent information can help guide policy decisions, such as where to allocate available resources at different stages during an
utbreak. The regional level risk is achieved by computing the node strength statistic for all nodes of the network. Node strength is
efined as the sum of all weights incident to a node. In the case of a directed network, out-strength, i.e., the sum of all outgoing link

http://www.naturalearthdata.com/
https://doi.org/10.1371/journal.pntd.0006194.g006
http://www.nextstrain.org/zika
https://journals.plos.org/plosntds/article/figure/image?size=medium&id=info:doi/10.1371/journal.pntd.0006194.g006
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eights, and in-strength, i.e., the sum of all incoming link weights, are calculated to provide the relative export and import risks.
ode strength values can be used to rank the regions according to outgoing (export, Fig 6B) and incoming risk (import, Fig 6C and
D), and more critically, observe how the ranking and magnitudes of the risk change over the course of the outbreak.

egional exportation risk

o determine the regions most likely to contribute to the spread of Zika virus during the epidemic, we estimated the the dynamic
xportation risk using the route-level network (Fig 6B). Martinique, Brazil, Colombia, Puerto Rico and Mexico are identified by the
odel to pose the highest risk of spreading Zika to new regions. Intuitively, the export risk is dominated by the set of counties

infected earlier in the outbreak and those with high incidence rates. Martinique stands out as having the highest exportation risk,
hich peaks during March, corresponding to the month with the highest incidence rate (Fig 1B). The highest exportation risk

hrough 2015 is posed by Brazil and Colombia, which were the two countries reporting early and large outbreaks (Fig 1A). Brazil
as identified as the likely source of spread to the first few Caribbean Islands, which is consistent with the phylogenetic data [3, 4].
ur model estimates that Brazil and Colombia became less prominent in their roles of seeding new Zika virus outbreaks from
ecember, 2015, to May, 2016. This time period corresponds to the significant rise in the number of new regions reporting local
ika virus transmission (Fig 1C) and the rise of Zika incidence rates in many Caribbean Islands (Fig 1B). The increased exportation

isk posed by Martinique during this time captures this behavior (Fig 6B).

egional importation risk

e similarly aggregated the route-level network at each destination to determine temporal and regional importation risk (Fig 6C and
D). The regions at highest risk of local transmission are dominated by the less developed countries and territories in Central
merica such as Belize, and the islands in the Caribbean, such as Haiti, Saint Lucia, Grenada, and Dominica. The high ranking of

hese regions is due to their low GDP (Fig 4A), high human population density (Fig 4B), and high vector suitability (Fig 3).

or the U.S., the states with the highest importation risks were Florida, Georgia, and South Carolina, mostly due to their high Ae.
egypti suitability (Fig 3) and incoming travel volume from the affected regions [24]. Compared to much of the Americas, however,

hese importation risks were low, predominantly due to their high GDP (Fig 4A). In fact, Florida was the only one of those three
tates (along with Texas) that reported local Zika virus transmission. These findings correspond with and reinforce previous route-

level risk rankings, that is less developed regions are more likely to see local Zika virus transmission, given they meet the basic
equirements for Ae. aegypti-borne virus transmission.

ensitivity to case reporting errors

uch of the dynamic aspects of our network model are based upon reported Zika virus cases, which are likely biased and vastly
nderestimated. Moreover, there is often a substantial delay (3-12 months) between actual introduction of the virus and the first
eported case [2–4, 24]. The reporting inaccuracies can be attributed to the high percentage of asymptomatic Zika cases and

insufficient surveillance methods, among other factors. While we cannot feasibly correct for all reporting inaccuracies, we
onducted sensitivity analyses to account for delays in case reporting (Fig 7). Both three- and six-months reporting delays were
onsidered, and the model was re-run with corresponding shifts in the data to represent each assumption. While the coefficient
ankings slightly changed, likely representing better fits between local vector suitability and Zika incidence rates, the general
onclusions were unchanged—low GDP was still the best predictor of local Zika virus transmission. Thus, our results appear to be
obust to some reporting inaccuracies.

Fig 7. Sensitivity analyses accounting for delays in reporting Zika virus transmission.
The model was re-run by shifting the reported Zika virus cases by three and six months for each region to account for delays
in outbreak detection.
https://doi.org/10.1371/journal.pntd.0006194.g007

imitations

ur work takes a major step towards improving our understanding of the risks associated with Zika virus spread and local
ransmission; however, there are certain limitations of this analysis that must be noted here and addressed in future research:

1. For consistency, we aggregated all attributes to the same spatial scale, and due to limitations on available case data, the model was implemented at the state
and country level. For some of the smaller countries and Caribbean islands with only one major city or international airport, this was not a major problem. For
large countries with substantial heterogeneity across the region, however, certain aggregated attributes are not necessarily representative. The mean vector
suitability is perhaps the most compromised attribute. The use of the an average suitability across a large region with high variability in environmental
conditions and landscape is not accurate, and may result in underestimations or overestimations of potential risks for certain regions included in the model.

https://doi.org/10.1371/journal.pntd.0006194.g007
https://journals.plos.org/plosntds/article/figure/image?size=medium&id=info:doi/10.1371/journal.pntd.0006194.g007
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2. Reported Zika case data is vastly underreported and subject to substantial variability across regions. This issue affects two attributes used in this model, the
incidence rates and the dates of the first reported cases. The level of inaccuracy is impossible to quantify. However, we partially addressed this issue through
sensitivity analysis conducted around assumed reporting delays (Fig 7). Our analysis demonstrates that reporting delays would not likely alter our general
conclusions regarding the risk factors associated with Zika virus spread.

3. Due to the lack of case data for Brazil between May and December 2015, estimated case counts were used (as described in the data section). These
estimated values may result in an overestimate or underestimate of the actual number of cases during this time period, and potentially impact the estimated
outgoing risk posed by Brazil.

4. At the start of this study, 2015 monthly air travel data was the most recent data available and was therefore used in place of 2016 data in the analysis. The
main discrepancy due to this substitution is in August, when the 2016 Olympics where held in Rio. The travel patterns into and out of Brazil were likely
substantially different in 2016, and would not be represented by the 2015 data set. Even with 2016 IATA data, however, the actual travel patterns surrounding
the Rio Olympics would not be captured because a large portion of the trips were made using chartered flights, which are not recorded in the same data set.
Furthermore, in August 2016, the number of local cases reported in Brazil dropped substantially (Fig 1A), as did the number of travel reported cases from
Brazil during and immediately succeeding the Olympics.

5. This study accounts for a single mode of inter-regional travel, passenger air trips, and excludes land and sea travel. Due to these limitations, the results from
this analysis likely underestimate the risk posed to destinations in close spatial proximity to affected regions, as well as the risk posed to the gulf U.S. states
and Caribbean Islands with substantial cruise ship travel [24]. To accurately capture multi-modal human mobility patterns requires data from multiple transport
sources or data which is not linked to any specific transport mode. Mobile phone data, as one such option, offers significant potential in modeling and
predicting epidemic spread [39].

6. Zika virus could be efficiently spread by mosquito species other than Ae. aegypti, which is not accounted for in this study. The potential role of Ae. albopictus
in transmitting Zika virus poses additional risk because it has a much wider presence in temperate regions, including southern regions of the Americas and
Australia, as well as the northern United States and parts of Europe and Canada [38, 47]. However, we recently presented data to suggest that Ae. aegypti
presence alone best explains the geographical distributions of Zika virus outbreaks in the Americas [39], thus the reason for it being the focus in this work.

7. Finally, this analysis ignores the role of potential non-vector-borne mechanisms of Zika virus transmission. This includes sexual [59–61] and vertical
transmission [8]. While vector habitat suitability will likely continue to play a predominant role in the spread of Zika virus, further research is necessary to
understand how alternative transmission mechanisms may impact the local risk profiles.

onclusions

ur work enhances our understanding of and ability to investigate the risk factors which contributed to the spread and local
ransmission of Zika virus during the 2015-2016 epidemic in the Americas. For each region, our model is informed by data on
egional socioeconomic factors, vector habitat suitability, passenger air travel data, and epidemiological data. We constructed and

implemented a dynamic extension of the GIIM to estimate the contribution of each risk factor to the likelihood of Zika virus
ransmission. Our model relies on a multi-agent based optimization method to estimate the parameters and a data driven
tochastic-dynamic epidemic model for evaluation. The GIIM was shown to perform well based on quantitative metrics.

ur results from the final model indicate the spread and local transmission of Zika virus was quite multifaceted. As expected,
egional attributes influencing vectors (Ae. aegypti suitability), hosts (human population density), and viruses (Zika incidence rates
t origin of travel) all contributed to the likelihood of establishing local mosquito-borne transmission. Passenger air travel volume,
owever, was notably less impactful that the other attributes. Therefore, rather than travel restrictions, we predict that mosquito
ontrol will be more effective at reducing Zika virus introductions leading to local transmission. This debate recently arose during
he 2016 Rio Summer Olympics where some wanted to ban the games to prevent further Zika virus spread [62]. Our results
uggest that additional travel for the Olympics was highly unlikely to make a significant impact.

rom our model, the coefficient most associated with Zika virus transmission was the regional GDP per capita, where a lower GDP
orresponded to higher transmission risk. Although GDP does not directly influence transmission, it likely serves as a proxy for
osquito-host interactions [63] and surveillance activities. For example, people living in poverty often do not have the means to
rotect themselves from host seeking mosquitoes, such as air conditioning and screened windows common in higher income
reas. Findings by Netto et al. [64] of higher Zika virus seroprevalence in areas with lower socioeconomic status further support our
ssociation. This, now evidence based conclusion that Zika and other Ae. aegypti-borne viruses should be considered diseases of
overty, is also consistent with other expert opinions [37, 65, 66].

he two most significant risk factors identified in our work, namely GDP and population density, are often excluded in geographic
isk profiling of Aedes vector-borne diseases, and should be considered in future analysis. Our model is not specific for Zika virus
nd could easily be employed for other mosquito-borne viruses, such as dengue and chikungunya, with sufficient epidemiological
nd entomological data. Furthermore, the model could be adapted as a tool to inform real-time policy decisions regarding resource
llocation for destination-based surveillance and vector control.

upporting information
1 Data.
he excel file includes the following input data and model results a) Regional population density, GDP and monthly reported case
ata used as input in the model; b) Monthly Case data for each country; c) The top 100 routes likely to result in local Zika

ransmission at the destination and their time-dependent relative risk estimates; d) The complete set of regions included in the
odel and their time-dependent relative importation risk; e) The complete set of regions included in the model and their time-
ependent relative exportation risk.
ttps://doi.org/10.1371/journal.pntd.0006194.s001
XLSX)
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