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step forward can potentially pave the way for retrospective elu-
cidation of disease etiologies and the development of rapid 
throughput diagnostic imaging modalities in the future. 

 Cells are the living inhabitants of our organs and tissues. 
From bone to brain, cells’ viability, spatiotemporal arrange-
ment, and local extracellular matrix milieu refl ects their life 
history and future health. [ 5–11 ]  Environmental, e.g., rainforest, 
health offers an analogous albeit scaled up, systems biology par-
adigm. Satellite imagery and geographical information system 
approaches provide a perfect means to separate the “trees from 
the forest and the forest from the trees” while further allowing 
assessment of ecosystem health measures, such as tree viability 
and watersheds, over time. [ 1,2 ]  No such diagnostic medical 
imaging modality is currently available. 

 High resolution and throughput imaging techniques do 
exist, e.g., for electron microscopy of ultrastructural patho-
logical changes in diagnosis of malignant schwannoma, [ 12 ]  but 
regions of interest are limited. There is currently an acute need 
for such a technology for assessment of kidney biopsies which, 
e.g., are currently sent physically from Dubai to the Cleveland 
Clinic core laboratories via daily express shipments, for elec-
tron microscopy and pathology readouts that are entered online 
in Cleveland for reading by doctors in Dubai. Furthermore, 
quantitative approaches, such as calculation of fractal dimen-
sion in confocal imaging datasets, demonstrate the feasibility 
of automated, rapid throughput diagnostic measures in small 
fi elds of view ( Figure    1  ,  Table    1  ). However, the potential for 
associated sampling errors have limited the clinical use of such 
approaches. [ 12,13 ]  Hence, the approach described in this manu-
script may have transformative potential for the fi eld. 

   An understanding of emergent structure-function relation-
ships during tissue genesis by cells (e.g., during development, 
tissue engineering) and degeneration and failure of tissues as a 
consequence of ineffi cient or insuffi cient adaptation (in context 
of aging, pathophysiology), necessitates a means to image these 
processes seamlessly across length scales. [ 1,2 ]  Yet the paucity of 
rapid throughput imaging technologies that allow for seamless 
bridging of structure-function relationships across length scales 
(10 −2  – 10 −9  m) stymies the elucidation of tissues’ emergent 
properties. This area of unmet need, identifi ed by both the U.S. 
National Science Foundation as well as the National Institutes 
of Health, [ 14,15 ]  provided the impetus for the current study. 

 Here, we aimed to develop and utilize, for the fi rst time for 
human life sciences applications, multibeam scanning elec-
tron microscopy (mSEM) together with big data visualization 
methods for massive image data sets. Multibeam scanning 

  The linking of local and global events is as critical for medi-
cine as it is for environmental science. Yet a means to image 
and analyze relationships between organs and their inhabitant 
cells, akin to zooming in on a satellite view of a rainforest 
ecosystem and its inhabitant trees, [ 1,2 ]  has remained elusive. 
Here, we combine a novel imaging technique, developed origi-
nally for rapid throughput quality assessment and detection of 
nanometer-sized defects in silicon wafers, [ 3 ]  with a geographical 
information system approach, to create navigable anatomic 
maps of hip joints from patients undergoing hip joint replace-
ment. [ 4 ]  Analysis of spatial information acquired by localizing 
relevant map landmarks, including both viable and pyknotic 
cells as well as blood vessel edges, enabled an understanding of 
organ health in the context of its cellular inhabitants. Applying 
this approach for the fi rst time to human tissues, it was shown 
that viable, pyknotic, and interstitial osteocytes show signifi cant 
differences in their relative proximities to nearest neighboring 
osteocytes. In contrast, no signifi cant relationship was observed 
between viable or pyknotic cells and their proximity to the blood 
supply. While current imaging modalities allow for organ-cen-
tric and cell-centric imaging of global and local regions of the 
organs and tissues comprising our bodies, this study demon-
strates the feasibility of seamless multiscale imaging of human 
organ systems to elucidate relationships between organ health 
and the viability of organs’ individual cellular inhabitants. This 
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electron microscopy uses a single electron optical column for 
multiple electron beam sources, allowing for a scale up of 
imaging speed, and thus specimen size. Multibeam scanning 
electron microscopy has the potential to increase image acquisi-
tion rates by orders of magnitude, allowing, for the fi rst time 
to our knowledge, rapid throughput imaging of anatomical 
human tissue blocks, such as whole joints, with electron micro-
scopic resolution. [ 3 ]  

 As a fi rst step toward elucidating structure-function rela-
tionships in the cortical bone of the femoral neck, we imaged 
human hip joint tissue resected during the routine course of 
hip replacement surgery (Cleveland Clinic Institutional Review 
Board approved study of stem cell niches and organ to cell 
structure-function relationships, [ 4 ]   Figure    2  ). 

  A major challenge in the implementation mSEM imaging 
of human musculoskeletal tissues was the tissue preparation, 
as the quality of electron microscopy images depends strongly 
not only on the microscope but also on sample fi xation, embed-
ding, and contrast. Indeed, this process took several iterations. 
Coronal sections of the femoral head and transverse sections 

of the femoral neck were sectioned by an orthopaedic patholo-
gist and prepared for mSEM. To maximize infi ltration and to 
minimize artifacts on specimen surfaces, block specimens 
were embedded in polymethylmethacrylate rather than typical 
EM epoxy resins such as Epon. Additionally, atomic force and 
electron microscopy methods, routinely used to prepare and 
process samples no larger than a millimeter on edge, were 
developed to prepare three orders of magnitude larger femoral 
head and neck sections for mSEM. [ 3,12,13 ]  Selective etching of 
the samples revealed further details of intrinsic organic and 
inorganic tissue structure, similar to characteristics found in 
previous studies using atomic force microscopy, [ 16,17 ]  albeit 
expanding from the mesoscopic to nanoscopic length scales 
(Figure  2 ,  Figure    3  , and  Figure    4  ). 

   Using the mSEM prototype, we successfully imaged joint 
tissue blocks containing complex tissue composites across 
length scales (10 −2  – 10 −9  m) and in a rapid throughput manner 
(Figure  2 , Figure  3 ,  Table    2  ). The mSEM technology enabled 
imaging of several cm 2  of surface area, at nanometer resolu-
tion, over the course of hours, and resulted in terabyte-sized 
image datasets comprising tens of thousands of high-resolution 
images. 

  To maximize accessibility of data for scientists and the public 
alike, further steps were taken, including automated, regis-
tered image stitching (using Fiji [ 18 ]  and TrakEM2 [ 19 ]  libraries), 
tile pyramid rendering (TrakEM2, [ 20 ] ), and visualization using 
the Google Maps API [ 21 ]  to enable seamless zooming in and 
out and rapid navigation of tiled image maps. [ 22,23 ]  Global map-
ping paradigms are particularly useful to differentiate the pro-
verbial “forest from the trees and the trees from the forest”. [ 1,2 ]  
Yet, stitching of so many ultrahigh resolution images was 
not trivial. Furthermore, anomalies noticed during stitching 
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 Figure 1.    Use of fractal dimension as a measure of connectivity and disease diagnostic in bone cell networks. A) Laser scanning confocal images of 
cortical bone from patients with normal, osteoporotic, osteoarthritic, and osteomalacic cortical bone from the femoral neck of human patients (IRB 
approved, Cleveland Clinic, acquired during the course of hip replacement surgery, B) Images reproduced with permission. [ 10 ]  Copyright 2004, Elsevier. 
Fractal dimension is calculated using the box count method on the bone cell (osteocytic) network from femoral neck cortical bone (tissue block). 
Quadrants or boxes made up of 64 (yellow), 32 (turquoise), and 16 (green) pixels are assessed and compared from healthy, osteoporotic, osteoarthritic, 
and osteomalacic specimens Table  1 ).

  Table 1.   Fractal dimension (FD) calculation for healthy and diseased 
femoral neck cortical bone (white shaded area in Figure  1 B, arrow).  

Diagnosis Normal Osteoarthritic Osteoporotic Osteomalacic

FD range 1.49 – 1.60 1.28 – 1.36 1.25 – 1.42 1.55 – 1.65

FD mean 1.54 1.30 1.35 1.60

Standard 

deviation

0.028 0.019 0.057 0.038

Standard error 0.008 0.005 0.016 0.010

Sample size 13 13 13 13
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required development of custom code to correct for tracking 
errors intrinsic to precision micromachined systems meas-
uring in the nanometer range and the physics of the interaction 
between the multiple electron beams and the specimen. 

 TrakEM2 is capable of managing extremely large image data 
sets; using TrakEM2, [ 24 ]  the volumes of interest do not need 
to be read wholly into the computer memory. This overcomes 
the typical limitations related to memory consumption. There-
after, we used the Javascript API of Google Maps to visualize 
the resulting tiled pyramid structure, allowing for interactive 
browsing by the user (Figure  3  and Figure  4 ). To create a fi rst 
map of the human hip, 55 000 mSEM images were stitched 
together using Fiji and TrakEM2 libraries and exported as two 
million 256 × 256 prerendered tiles. Google Maps API and 
associated interactive navigation capacities allowed for visuali-
zation and interaction with the image datasets for scientists and 
the general public alike (Figure  3 ,  http://www.mechbio.org ). 

 As a fi rst case study to elucidate the relationship between 
bone health and cell health in the femoral neck of the human 
hip, the Google JavaScript API was used to enable marking of 
physiologically relevant landmarks on the navigable map of 
the femoral neck (Figure  4 ). For proof-of-concept, a blinded 
observer marked blood vessel edges, viable osteocytes, and 
pyknotic osteocytes using standard blue, green, and red pins, 
respectively. Healthy osteocytes were defi ned as having a 
 minimum of three visibly distinct cell processes while pyknotic 
osteocytes were defi ned as having less than three processes 

in the plane of view. [ 9 ]  Osteocytes within osteons were identi-
fi ed along radii extending from the edges of Haversian blood 
canal vessels (inner boundary), outward toward cement lines 
delimiting the outer edges of osteons. Interstitial osteocytes, 
defi ned as those cells located in interstitial bone (by defi nition 
outside of osteons) were also identifi ed. The respective posi-
tion coordinates of the pins within the map were exported and 
distances were calculated using the MATLAB script. Statistical 
distributions and non/parametric tests were run between the 
dataset distributions of viable, pyknotic, and interstitial osteo-
cytes (JMP, SAS Institute), as related to neighboring blood 
vessels and osteocytes. This enabled testing of specifi c hypoth-
eses related to bone health as well as osteocyte viability, connec-
tivity, and transport path distances. 

 Subtle but statistically signifi cant differences ( p  < 0.0001) 
were observed in distances between viable, pyknotic, and inter-
stitial osteocytes (Figure  4 ), where healthy osteocytes exhibited 
the shortest distance (less than 8 μm with smallest variance 
and exponential distribution) to other viable cells. While pyk-
notic cells also exhibited an exponential distribution, these cells 
had a longer path distance and higher variance compared to 
viable cells. In contrast, interstitial cells exhibited a normal dis-
tribution with mean path distance to the next viable cell more 
than fi ve times that of viable cells and four times that of pyk-
notic cells. No statistically signifi cant differences in distance to 
nearest blood supply were observed between viable, pyknotic, 
and interstitial cells ( p  > 0.05). 
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 Figure 2.    Seamless multiscale imaging of hip joint tissue, prior to and after (inset in (C) etching step. A) Transmitted light image of OsO 4  stained 
femoral head section, with greatest penetration of contrast agent (darkest red) in articular cartilage (white dotted square) and marrow spaces of the 
subchondral bone (black dotted square). B) Laser scanning confocal image of specimen shows autofl uorescence (light areas) of subchondral bone 
and marrow spaces (ellipsoids at top) as well as cartilage (dark), with two visible cartilage defects (bright cracks, arrows). C) Large scale, tiled mSEM 
image of same area with single fi eld of view showing (sub-)cellular resolution of D,E) bone and F) blood cells without additional etching.
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 Hence, osteocyte viability in femoral necks from aging 
patients undergoing arthroplasty appears to relate more to cell 
network connectivity than mean path length to blood supply. 
While no statistically signifi cant differences in mean path 
length to the endosteum, periosteum or nearest blood vessel 
were observed in viable, pyknotic or interstitial osteocytes, 
a small but signifi cant increase in distance to the next viable 
osteocyte was observed in pyknotic compared to viable cells. 
This may implicate connectivity to other viable cells as a factor 
in osteocyte survival and tissue, respectively, organ health with 

age. Automated segmentation routines are in development to 
facilitate automated and rapid throughput diagnostic assess-
ment of imaging datasets. 

 Combined with geospatial approaches, this novel imaging 
technology opens the door for a range of network modeling 
applications which will enable disease epidemiology studies 
in populations of cells that inhabit tissues and organs. For 
example, to further explore the role of cellular connectivity in 
osteocyte survival, network analysis tools such as clustering 
methods can be used to identify spatial relationships between 
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 Figure 3.    Creation of a fi rst navigable map of the human hip using a full imaging data set of the femoral neck across length scales. A) The femoral neck 
(circa 4.8 cm in diameter) was imaged as a series of B) polygonal regions. C) One polygonal region (circa 2.3 cm), comprised over fi fty-fi ve thousand 
SEM images, which were then stitched together using Fiji and TrakEM2 libraries, and exported as two million 256 × 256 prerendered tiles, to visualize 
using Google Maps API (Figure  2 ). D) One hexagonal region comprised 61 single images. E) One such image from an unetched specimen, with a 
resolution of ≈4 nm per pixel, resulting in  circa  112 × 10 9  pixels. F) A corresponding etched specimen. G) Rendering of pyramidal data storage using 
Google Maps API to achieve “zoomable” image, akin to a “Google Maps” for tissues and organs of the body. Representative zoomed in screen shot 
from the fi rst data set of a patient’s hip. Osteocyte (Ot) interacts with the tightly coupled cells (Bone Lining Cells, BLC) lining the blood vessel (BV) 
via numerous osteocytic processes. Full, navigable and “zoomable” dataset and an animation demonstrating navigation of the maps can be accessed 
at http://www.mechbio.org.
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and among groups of viable and/or pyknotic cells. [ 25–28 ]  Net-
work connectivity, shortest path and search algorithms can 
be implemented to further investigate distance-based rela-
tionships between pairs of osteocytes and/or osteocytes and 
blood vessels. Given additional samples from individuals in 
varying disease states, the temporal progression of bone dis-
ease can also be modeled at the network level, wherein the 
structural evolution of the cellular network can be explored. 
Bringing this ensemble approach to the next level, i.e., to 
develop rapid throughput diagnostics, requires both devel-
opment of new image processing pipelines and expansion 
of computational power. Through automated segmentation 
of landmarks, including cells and blood vessels, as well as 
epidemiological approaches as noted above, these methods 
may have great potential for early diagnosis or to identify 
high-risk patients well in advance of debilitating disease 
progression. 

 In conclusion, joint tissue blocks containing complex tissue 
composites across length scales (10 −2  – 10 −9  m) were successfully 
imaged in a rapid throughput manner. Visualizing the seamless 
mSEM images using the Google Maps API presents a novel 
opportunity to tie local health events at a cell and tissue length 
scale to organ health and disease, providing an unprecedented 
means to assess the health of the hip joints’ individual living 
inhabitants (cells) to elucidate etiology of bone disease. Use of 
the ubiquitous Google Maps API platform for navigation of and 
documentation of relevant landmarks in human tissue samples 
further eases access to and interaction with the data, by the sci-
entifi c community as well as the general public. In addition, the 
new technological platform allows for unparalleled examination 
of emergent structure-function physiological relationships in 
human health and disease. Like a multiscale and multidimen-
sional puzzle, our approach serves as a platform for mapping 
the human body and its cellular inhabitants. 

 This novel platform presents a new set 
of challenges and limitations, in part due to 
its cutting edge nature, as well as in consid-
eration of the sheer size of the resulting data-
sets. The “sheer size limitation” presented 
itself when we enabled public access to the 
fi rst map of the human hip, comprising two 
million prerendered images, with sample 
sizes in the range of hundreds of gigabytes 
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 Figure 4.    The fi rst navigable map of the human hip was used to investigate relationships between path distances between cells and the blood supply. 
The dark area in the center of the image represents an artifact of sample preparation and for this reason, areas including the artifacts were not included 
in quantitative studies. A,B) Applying navigation features typical for Google Maps (through use of the Google JavaScript API), pins were dropped on 
landmarks including viable (green) and pyknotic (red) osteocytes as well as blood vessel edges (blue). C) Landmarks were imported and rendered 
graphically in a statistics program to test hypotheses. While no statistically signifi cant differences were observed between nearest path distance to the 
blood supply and pyknotic or viable osteocytes (data not shown), statistically signifi cant differences were observed between D) viable, pyknotic, or 
interstitial cells and the distance to the next viable osteocyte ( p  < 0.0001). This may implicate connectivity to other viable cells as a factor in osteocyte 
survival with age.

 Table 2.   Technical specifi cations for mSEM imaging protocols used in the study. 

Sample 
dataset

Beam 
number

Single-beam FoV width, 
height [µm]

Landing energy 
[kEV]

Pixel resolution 
[nm]

Dwell time 
[ns]

1 61 12.60, 10.96 1.5 9.78 100

2 61 12.60, 10.96 1.5 9.78 100

3 61 12.60, 11.20 1.5 3.76 100
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major hurdle, given the technical challenge to publish results 
consisting of such massive datasets, or in more than two 
dimensions; this presents a profound barrier to transfer of 
information and knowledge (power) to the public as well as the 
fi eld as a whole. This barrier can be overcome through a com-
bination of expertise in handling and sharing of massive data 
sets as well as dedicated computing power, paving the way not 
only to understand and reverse natural processes of organ and 
tissue failure as we age, but also to ignite the imagination of the 
public in the power of research and pursuit of knowledge.  

  Experimental Section 
  Specimen Acquisition : Femoral necks and heads, normally discarded 

after hip replacement surgery, were collected after sectioning in the 
coronal plane of the femoral head and the transverse plane of the 
femoral neck (to facilitate chemical fi xation) by the Cleveland Clinic 
Pathology Department per IRB protocol guidelines (Cleveland Clinic IRB 
protocol 12-335). [ 4 ]  

  Specimen Preparation : Tissues were fi xed, undecalcifi ed, in 
glutaraldehyde (2.5%), formaldehyde (4%) in cacodylate buffer (0.2  M ) 
at 4 °C. They were then processed for bulk embedding in poly(methyl 
methacrylate) (PMMA), which polymerized slowly under vacuum. Once 
hardened, the PMMA embedded specimens were precision Computer 
Numerical Control (CNC)-milled to achieve mirror-like planarity. 
Thereafter, specimens were prepared for carbon coating and imaging. 
Between imaging steps, PMMA embedded specimens were selectively 
etched with HCl (0.02  M ) for 90 s and/or NaOCl (10%) for 11 min 
per our previous atomic force microscopy protocols [ 16,17 ]  to image the 
respective inorganic or organic phase of the extracellular matrix from 
respective tissues of the joint complex. 

  mSEM Imaging : Samples were imaged with a 61-parallel beam Zeiss 
prototype mSEM, using a 100 ns of dwell time per beam and a pixel 
size of 9.8 nm (Table  2 ). Sixty-one single-beam images per hexagonal 
multibeam fi eld-of-view (mFoV) were generated per scanning passage, 
each imaging 12.60 and 10.96 µm in box width and height, respectively 
(1288 by 1120 pixels). Each beam simultaneously generated a 
rectangular subimage with a FoV on the order of circa 10 µm (Figure  3 ). 
To scan 5.85 mm 2  of the mapped sample (Figure  3 ), 898 mFoV regions 
were obtained at an acquisition rate of 100 TB d −1 , each comprised of 
88 MB of image data and stored in a lossless format. Overlapping single 
images in the same mFoV and between adjacent mFoV had roughly 8% 
and 80% overlap, respectively, required for stitching procedures. 

  Image Stitching : Python scripts were developed in Fiji, [ 18 ]  using the 
libraries from the registration toolkit TrakEM2, [ 19 ]  to automatically 
generate individual images of complete datasets (adapted from 
S. Preibisch et al.). [ 24 ]  

 Pixel coordinates for each single-beam image were available from the 
microscope metadata, providing a fi rst approximation for relative stitching. 
In the resulting tiled image sets, nanometer-scale discrepancies in stitching 
were observable as gaps or imperfect alignment of biological structures 
at image boundaries. These imperfections were most likely attributable to 
interactions between electron beams and specimen sample. To address 
these, and after fi rst verifying some consistency of this error across the 
entire specimen, the isolated stitching of a representative mFOV region 
was processed and the resultant translation offset vectors were applied to 
the correspondent tiles in other regions. This greatly reduced the number 
of image registration calculations in the stitching process. 

 To alleviate computational load, stitching was calculated within and 
between adjacent hexagonal fi eld-of-view regions. Brightness disparities 
amongst image tiles were minimized using nonlinear blending. [ 24 ]  

  Maps : A TrakEM2 prerendered tile exporter script (Beanshell script 
developed by Stephan Saalfeld, https://github.com/axtimwalde/
fi ji-scripts/blob/master/TrakEM2/catmaid-export2.bsh) was adapted 

to process our datasets tiled pyramid structure. The reconstructed 
mosaic, with a total pixel space of 315486 × 356226, of all single-beam 
images was partitioned in PNG-compressed 256 × 256 pixel tiles, which 
comprised the highest, full-resolution zoom level of the pyramid. Pixel 
size was increased twofold for each unitary decrement in zoom level. 
Lower zoom level tiles were rendered by recursively grouping four 
tiles (512 × 512 pixels) and downsampled to 256 × 256 pixel tiles. The 
pyramid tiles were saved in a web server with unique directory paths as 
follows 

 .. /(maxzoom zoom)/ y / y _ x _(maxzoom zoom).png− −    

 where maxzoom represents the maximum zoom level, and x and y 
are the position in the tile coordinate system, as described in the 
Google Maps API documentation [ https://developers.google.com/maps/
documentation/javascript/maptypes  (Google Maps custom map 
documentation)]. 

 Google Maps API manages the retrieval and displaying of the 
necessary tiles. The creation of a custom map, using the Google Maps 
API, requires MapType object for translation between (screen to tile) 
coordinate frames.  
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