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High volumes of passenger air travel increase the risk of infectious 
disease epidemics and pandemics. Regional preparedness planning for 
large-scale outbreaks requires models that are able to capture outbreak 
dynamics within a control policy evaluation framework. Previous studies 
focused on either modeling outbreak dynamics or optimizing outbreak 
control decisions; this paper proposes an integrated approach that com-
bines both aspects. A multiscale epidemic outbreak model is introduced 
that is designed to capture the infection dynamics at both the local (city) 
scale and the global (air travel) scale. A bilevel decision-making frame-
work is then proposed to identify the optimal set of outbreak control 
policies, while accounting for local and global outbreak dynamics. The 
model is implemented for a case study in which a hypothetical epidemic 
outbreak is assumed to emerge from within the United States, and dif-
ferent control resource allocation strategies are explored and evaluated. 
The results highlight the importance of accounting for outbreak dynam-
ics within the decision-making process and provide insight into the design 
and efficiency of a range of control strategies. This research is an initial 
effort to be followed by further research on the design of outbreak control 
strategies by using optimization algorithms under this framework.

The scale and connectivity of the global air travel network introduce 
a new dimension of risk for infectious disease spread. Today, infected 
individuals can easily travel to new regions where the local public 
health authorities may not be prepared, thus increasing the risk of 
pandemics. Historical examples include the 2003 SARS outbreak in 
Hong Kong, which spread to 37 countries over a period of 6 months, 
and the swine flu outbreak in 2009, which resulted in approximately 
61 million people being infected worldwide within a single year.

Epidemic control measures can be applied to the air travel net-
work to minimize the risk of large-scale contagion episodes. As an 
example, in the height of the Ebola outbreak in 2014, an extra layer of 
temperature screening was applied to passengers entering the United 
States from the three most impacted West African countries. Five air-
ports were selected for the extra screening: JFK Airport in New York, 
Newark Liberty International Airport in New Jersey, Chicago O’Hare 
International Airport, Washington Dulles International Airport, and 
Hartsfield-Jackson Atlanta International Airport (1). From the per-
spective of policy decision makers, such as the Centers for Disease 
Control and Prevention, it is critical to assess the cost and effectiveness 
of such control measures at both the local (city) and global (national 
and international) levels. Therefore, it is prudent to investigate the 

complete dynamics of the infection, which includes both local and 
interregional transmission, to better understand the spreading behavior 
and design the most effective outbreak control measures.

It is the purpose of this research to develop a network modeling 
framework that can be used to evaluate the impact of outbreak control 
policies and rank them with respect to both performance and cost. 
To achieve this, a multiscale epidemic outbreak model was devel-
oped that captures the infection dynamics at both the local and global 
scales. The epidemic outbreak model was then used to evaluate a 
range of control policies that vary in their allocation of resources. This 
framework is proposed in the form of a bilevel optimization formula-
tion that accounts for local and global outbreak dynamics within the 
decision-making process. On the basis of the results from the model, 
the most cost-efficient set of strategies can be identified.

The developed model is applied to a case study by using the 
worldwide air travel network, where the control policy considered 
is passenger screening at U.S. airports, and the control strategy 
performance is based on the resulting size of the outbreak at a given 
point in the future.

State of the Art

The literature review is conducted in two parts, each corresponding 
to a major contribution of this work. The first section includes a 
discussion of previous works that seek to capture the dynamics of 
epidemic outbreak at both local and global levels, which are used 
for predicting future epidemic spread. The second section addresses 
the set of previous works that incorporate an optimization process to 
inform epidemic control decisions.

Outbreak Dynamics Models

The fundamental epidemic model was developed by Kermack and 
McKendrick (2). This compartmental model is used to represent the 
evolution of an outbreak in a given population over time by using a set 
of differential equations and specifies the proportion of the population 
in each possible state that an individual can assume: susceptible (S), 
infected (I), and recovered (R). The SIR model assumes a homoge-
neous population mix. This model assumes that disease transmission 
is a mass action process. Hence an important underlying assumption 
of the model is that each individual has the same opportunity of 
coming into contact with any other individual.

The SIR model is often only used to model the transmission 
dynamics within a single homogeneous population. For a hetero-
geneous network consisting of multiple linked populations, for 
instance, cities connected by the air travel network, a more detailed 
model that accounts for the scale-free properties of the network 
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structure is necessary (3). Simulation-based (4–7) and analytical 
epidemic models (8–10) have both been developed to analyze dif-
ferent epidemic spreading processes on the basis of the air traffic 
network. These models are useful for planning purposes and are 
developed to predict expected epidemic spreading behaviors for a 
range of outbreak scenarios.

Properties of the air traffic network structure were also studied 
in detail to generate analytical insights and predictions on the path of 
the epidemic spread. The work by Gardner et al. (11) and Brockmann 
and Helbing (12) are examples of this type of model. Gardner et al. 
used the current epidemic reports and the air traffic network structure 
to infer the most likely path that the epidemic has taken. Brockmann 
and Helbing explored paths in the network to compute the likelihood 
of nodes in the network being infected from a source node. Similar 
predictive models were also proposed by Gardner and Sarkar (13) and 
Gardner et al. (14) on the airport importation risk of dengue. These 
predictive approaches combine outbreak information and air travel 
network properties and are valuable for epidemic risk assessment in 
the context of the global air travel network and policy decision making.

Outbreak Control Models

Optimal allocation of epidemic control resources within multiple 
independent populations has been studied by Richter et al. (15) and 
Brandeau et al. (16). Their models aim to minimize the number of 
people infected in the populations over a finite time horizon, by reduc-
ing the rate of contact between susceptible and infected individuals by 
employing epidemic prevention programs. Zaric and Brandeau (17) 
built on these models to develop a more general modeling framework, 
accounting for interactions and interventions between multiple popu-
lations. However, these interactions were modeled by assumed move-
ment rates, and an example with four populations was given. The 
objective examined was to minimize the impact of infection occur-
ring over a long-term horizon—up to multiple years. The application 
of control to a single population over multiple time periods has also 
been studied by Greenhalgh (18, 19), Blount et al. (20), and Müller 
(21). Zaric and Brandeau then combined these two types of models to 
develop a resource allocation model in which both multiple time peri-
ods and multiple populations are considered (22). In this work, the 
authors use a susceptible–infected–susceptible model (instead of an 
SIR model). Ndeffo Mbah and Gilligan explored a similar allocation 
problem using the SIR model (23). The inclusion of the recovered 
compartment (which was also accounted for in work reported here) 
increases the complexity of the model and optimization problem. 
The present study significantly differs from these previous studies by 
exploring the resource allocation problem in a network-based envi-
ronment, where the structure of the network plays a critical role in the 
interaction of the populations.

The optimal allocation of control resources in the context of a travel 
network was explored by Deng et al. by using a bipartite network, 
assessing the effects of both vaccination and location travel restrictions 
(24). Other optimization strategies were developed by Cohen et al. 
(25), Borgs et al. (26), Chung et al. (27), Roy et al. (28), Gourdin et al. 
(29), and Preciado et al. (30). These models do not assume subpopula-
tions within nodes in the network. That is, the modeling frameworks 
used therein assume each node represents an individual, and network 
science metrics are often used to aid in optimization decision making. 
Chen et al. developed an optimization model by using air travel net-
work data, but the population spreading dynamics within each node 
were not explored (31).

This study takes this research direction a step further by develop-
ing a multiscale network modeling framework for the purposes of 
evaluating different outbreak control strategies, while simultane-
ously capturing interactions between populations and also the local 
population infection dynamics. Thus this study combines the use of 
an outbreak dynamics model and an outbreak control model. Within 
the outbreak dynamics model, the structure of the passenger air 
travel network is used to connect different locations. In the outbreak 
control model, the effectiveness of different control policies is evalu-
ated for both cost and performance (by using the outbreak dynamics 
model). The complete model is presented as a bilevel formulation in 
the next section.

Problem Formulation

This section presents the mathematical formulation of the decision 
problem addressed in this paper. A bilevel optimization approach is 
proposed in which the lower (follower) level captures the reaction of 
the outbreak, whereas the upper (leader) level represents the resource 
allocation problem. This approach allows one to model the outbreak 
control problem as a decision problem while accounting for outbreak 
dynamics.

The proposed lower-level formulation is articulated with a multi
scale structure: a local-scale SIR model is used to model outbreak 
dynamics at the city level and a global-scale network is used to model 
outbreak dynamics across the air traffic network. The upper-level 
decision problem addressed is that of finding the optimal allocation 
of outbreak control resources at the global level such that contagion 
risk is minimized subject to budget restrictions.

The outbreak model used to represent disease spread at the local 
scale is presented first and then there is a discussion on how this 
model is embedded within a larger global-scale structure representa-
tive of the air traffic network. Next a new formulation for the outbreak 
control problem is proposed.

Local-Scale Outbreak Model

The local-scale SIR model proposed to model the spread of infec-
tion within each individual region can be expressed in the following 
form, as proposed by Kermack and McKendrick (2):

= −
β

(1)
dS

dt

IS

N
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β

− γ (2)
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dt
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= γ (3)
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where S, I, and R are the number of individuals in each compartment 
at a particular time. The SIR model can be represented by ordinary 
differential equations summarized in Equations 1 through 3.

The model states the relationship between the current number of 
individuals in each compartment and the rate at which these compart-
ments grow. The rate at which susceptible individuals are infected is 
related to the number of infected individuals in the population, the 
total population size, and the transmission rate β, which is the prob-
ability of an infection happening when an infected individual and a 
susceptible individual come into contact. The rate of the recovery 
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of the infected individuals depends on γ, the recovery rate of the 
epidemic. The inverse of this value, 1/γ, is the time it takes for an 
infected individual to recover from the infection.

Global-Scale Outbreak Model

The model used to represent outbreak behavior at the global scale 
(i.e., among different regions) is now presented. Let G = (V, E) be a 
graph representing the air traffic network. The set of nodes V repre-
sents regions (e.g., cities) in which accessible airports exist, with a 
local population Ni,t (within each region), where the subscript i is for 
node index and the subscript t is for time step (i.e., the population 
is allowed to fluctuate on the basis of seasonal travel patterns). The 
set of links E represents air travel routes between regions that carry 
air travel passenger flow fij between each node pair (i, j), where  
j belongs to θ(i), the set of nodes with direct links to node i, which 
is referred to as neighbors of i. With this notation, one can then 
denote f +

i, the total number of incoming flows into a region node i:

f fi ij

j i

(4)∑=
( )

+

∈θ

This notation will be useful when the epidemic control mea-
sures are discussed later. The propagation of infection between 
regions through these flows captures the interregional spreading 
dynamics.

Coupling Local and Global Outbreak Models 
to a Multiscale Model

Next the authors describe how the local-scale SIR model and the 
global-scale network model introduced are coupled into a multiscale 
epidemic spreading model, here referred to as multiscale outbreak 
model. The local-scale outbreak model describes the epidemic pro-
gression within each region (i.e., node of the air traffic network). 
Accordingly, one can index the number of susceptible, infected, and 
recovered individuals by node index i. It is also assumed that the 
contact rate β varies by region; hence βi is denoted as the local con-
tact rate. This assumption is important, because it is motivated by the 
observation that the rate of contact between people is a function of 
the population density in a region. In this work a linear relationship 
is assumed.

In addition, this paper proposes to model the infection on a 
discretized time scale, even though the original SIR model is a con-
tinuous time model. This approach is adopted to couple the local 
outbreak models with global outbreak dynamics. If the time step used 
in the discrete time model is small enough compared with the total 
modeling time scale, then the model will faithfully reflect the outbreak 
evolution. Let the set of discrete time steps be T = {0, 1, 2, . . . , tobs}, 
where tobs is the observation time step at which one seeks to assess 
the outbreak state. Therefore, a time step subscript is added to the 
notations of the individuals in each compartment in each region too, 
and Equations 1, 2, and 3 become
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where Si,t, Ii,t, and Ri,t are the number of individuals in each  
compartment S, I, and R at node i and time t, respectively.

Note that the rates of change of compartments are now expressed 
as finite differences from the previous time step. The changes in time 
step t + 1 are calculated on the basis of the condition of time step t. 
The recovery rate γ remains unchanged and is assumed to be uniform 
across all regions. This rate variable could fluctuate across regions on 
the basis of the available local control resources, and it is possible to 
capture such behavior in the model; however, this is outside the scope 
of this particular study.

Local-scale outbreak models are influenced by network flows. 
Specifically, for each compartment, the number of passengers in 
the flow between two regions is assumed to be directly proportional 
to its percentage in the population of the origin of travel. That is,
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where Sij,t, Iij,t, and Rij,t are the number of individuals in each com-
partment S, I, and R traveling from node i to node j at time t, 
respectively. 

To ensure that the sum of traveling individuals in each com-
partment is equal to the total number of traveling individuals, the 
following is imposed:

= + + ∀ ∈ ∀ ∈ (11), , ,f S I R i V t Tij ij t ij t ij t

These traveling individuals are next incorporated into the local 
outbreak model; thus Equations 5, 6, and 7 are modified to
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For each region, the compartments are initialized with input data 
representative of the local outbreak state at the beginning of the 
period of interest (i.e., Ni,0, Si,0, Ii,0, and Ri,0 for each region i). It is 
also known that any change in the total population of a region is 
caused by the cumulative change in all compartments. These two 
relationships can be written as

− = − + − + − ∀ ∈ ∀ ∈+ + + +

(15)
, 1 , , 1 , , 1 , , 1 ,N N S S I I R R i V t Ti t i t i t i t i t i t i t i t

= + + ∀ ∈ (16),0 ,0 ,0 ,0N S I R i Vi i i i
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Note that if one substitutes Equations 12, 13, and 14 into the 
right-hand side of Equation 15, then uses Equation 11, the following 
relationship is found:

∑ ∑− = − ∀ ∈ ∀ ∈
( ) ( )

+
∈θ ∈θ

(17), 1 ,N N f f i V t Ti t i t ji

j i

ij

j i

This relationship states that the change in the total local population of 
a node is equal to the difference of the total outgoing flow and the total 
incoming flow into the node, a hidden flow conservation condition 
at any node in the network.

So far, the structure of the multiscale model used to depict disease 
transmission in the air travel network has been established. This 
multiscale model can then be used to assess the epidemic outcome 
when control measures are applied to the network.

Outbreak Control Problem Definition

The coupled multiscale model is used as the lower-level model in the 
resource allocation problem (i.e., the outbreak control problem). For 
each control resource allocation strategy, the multiscale model can be 
run to generate corresponding outcomes. The objective of the upper-
level model is to find the optimal outbreak control strategy to mini-
mize the risk of infection spread for the network at the observation 
time tobs. This optimization is subject to a budget constraint placed 
on the total amount of control resources available. The distribution 
of the resources has three fundamental dimensions: spatial (loca-
tion), temporal (when control is active), and volume (how much to 
distribute at each location). Given the large solution space, this issue 
poses a challenging problem to solve for.

The control method explored in this model is incoming passenger 
screening at designated airports. It is assumed that if any arriving 
infected passengers are caught during the screening process, they 
are quarantined from the rest of population at their destination 
(i.e., they remain under care and surveillance until they are no longer 
infectious). Thus these infected passengers will not spread infection 
any further and can therefore be treated as removed from the popu-
lation in which they are detected (i.e., they are immediately changed 
from an infected to recovered state). For infected passengers not 
successfully identified during the screening process, their recovery 
will still be governed by the recovery rate γ.

When control is implemented at a node i, the incoming passenger  
flows denoted by f +

i from Equation 4 are subject to passenger screen-
ing control. The control variable is expressed as a ratio with value 
between 0 and 1, indicating the percentage of infected passengers 
caught by the screening process at each location. The control variables 
are written as

[ ]∈ ∀ ∈ ∀ ∈0,1 (18),x i V t Ti t

The time step subscript belongs to the set T, thus implying that 
control can be implemented at any time, including t = 0.

The imperfect control (ratio < 1) can be interpreted as a result 
of either limitations of available screening equipment technology 
(i.e., all passengers are screened but only a fraction of infected pas-
sengers are identified) or limitations in personnel (e.g., it may not be  
feasible to screen all passengers), so only a percentage of those 
infected can be detected even if the screening technology is perfect. 
In reality it is likely both factors would be in effect, limiting the 
percentage of infected passengers detected. This control variable 
can capture the combined effect of these two factors.

The control is indexed by node number and time step, therefore 
indicating where and when to implement control. How much to 
distribute is indicated by the actual value of xi,t. Hence all three 
dimensions of variation of the control strategies have been captured 
with this variable. This control variable should be incorporated in 
the spread of the epidemic at the local scale, since the infected pas-
sengers move from the infected compartment to the recovered com-
partment at the destination region. Therefore, Equations 13 and 14 
can be modified to be
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This step is intuitive because at every time step, xi,tΣj∈θ(i)Iji,t incoming 
infected passengers from the infected compartment are moved to 
the recovered compartment, exactly as described before. With the 
influence of control built into the multiscale lower-level outbreak 
model, the upper-level decision model can be used to evaluate vari-
ous resource allocation policies. In this work, resources are distributed 
within the air travel network, and the impact of each in mitigating the 
spread of a current ongoing outbreak can be assessed.

Multiple possible objective functions can be defined to capture 
the risk of an epidemic. The objective studied in this paper is to 
minimize the total number of individuals affected by the epidemic 
in the entire network. If examined at the final time step tobs, the num-
ber of individuals affected include those who are currently infected 
and those who were previously infected but have since recovered. 
Therefore, the objective is written as

∑∑ ( )= +
∈∈

min (21), ,Z I RIR i t i t

t Ti V

The optimal outcome in this case is the resource allocation strategy 
that minimizes the number of individuals affected by the epidemic, 
while its cost does not exceed a fixed budget. In this work the cost 
incurred is assumed to be location specific (e.g., airport), a function of 
the number of incoming passengers, and the ratio of control applied. 
The total sum of the cost incurred in the entire network over the set of 
all nodes should not exceed the total budget. Let xi = [xi,t]t∈T∪{0} be the 
vector of control variables at node i ∈ V; then

∑ ( ) ≤+

∈

, (22)xh f Bi i i

i V

where hi is the cost function at node i and B is the total budget 
available.

The objective is simply to quantify a relative cost and performance 
across a range of control strategies, which can then be ranked accord-
ing to each metric, as well as cost-efficiency. For the purposes of 
this work, consider a simple two-part cost function that accounts for 
an upfront fixed cost of capital investment for the setup equipment, 
personnel, and procedures, and a daily service cost for implementing 
passenger screening. A general functional form that reflects these 
characteristics is the following:

∑ ∑( )( ) ( )= +( )
+

∞
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The first term captures the fixed cost; 1(0,∞) (Σt∈Txi,t) is an indica-
tor function that takes on the value of 1 if any amount of control is 
implemented at node i at any point in time, and 0 otherwise. The 
term ci is assumed to be the amount of capital investment for each 
node, if control is implemented. The second term captures the service 
cost; f +

i is the number of incoming passengers to node i at time t, 
and this is multiplied by a function gi(xi,t), which defines the cost to 
screen per passenger, if the control variable xi,t is set to be at a certain 
level. It is assumed that this function is nonlinear in nature because 
of a rising marginal cost as a higher degree of control is placed on 
a node (e.g., it would be hard to ensure that most of the infected are 
detected, and ensuring 100% infected are detected would be pro-
hibitively costly, if possible) (32). It is also assumed that control can 
be implemented at any point in time until the end of the modeling 
process when t = tobs, and vary over time.

With the optimization framework introduced, the formulations 
of the upper-level decision problem and the lower-level multiscale 
outbreak model are presented together in the next section. Thus the 
main contribution of this work is this bilevel modeling framework to 
facilitate optimized decision making, while accounting for multiscale 
infection dynamics.

Mathematical Formulation

Upper-Level Formulation

∑∑= +
∈∈

min (24), ,Z I RIR i t i t

t Ti V

subject to

∑ ( ) ≤+

∈

, (25)xh f Bi i i

i V

Lower-Level Formulation
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Observe that the flows between regions fij are assumed to be time-
independent (i.e., interregional flows are constant). This means the 
same amount of flow between each node pair is expected throughout 
the duration of the model simulation process. This assumption could 
be relaxed when detailed data are available to reflect variation in flows.

Case Study

A case study using the worldwide air travel network is presented in 
this section. A hypothetical epidemic outbreak is assumed to emerge 
from within the United States, and different control resource alloca-
tion strategies are explored and evaluated. The spread of infection 
is modeled at the global scale; however, the control decisions are 
only considered for U.S. airports. Thus the strategies are evaluated 
at the U.S. level (i.e., only U.S. infections are accounted for in the 
objective function).

Data

The 2015 global air travel data provided by the International Air 
Transport Association (33) are used to build the global air traffic net-
work used for the lower-level multiscale outbreak model. The aggre-
gate travel volumes for the month of June, July, and August are used. 
In this network there are more than 500,000 distinct travel routes, with 
3,766 distinct nodes (airport of a local region). The travel volumes 
can be grouped to calculate the total outgoing and incoming volumes 
through each airport. A closer examination of the data shows that the 
1,000 airports (out of a total of 3,766) account for approximately 95% 
of the total travel volume, which follows the scale-free nature of the 
air traffic network (3). That is, a few hubs are very well connected, 
while the rest are sparsely connected. In this paper, the analysis is 
focused on the truncated network with these 1,000 airports, which 
results in 141 airports accounted for in the United States. Although 
this is a simplification on the network structure, the effects are mini-
mal because the major airports and a majority of the travel volume are 
captured. To fit the purpose of building a model that could capture 
the dynamics of an emerging outbreak at its early stages, the flows 
are disaggregated to the average daily flows between airports. The 
population data at each airport are obtained from LandScan (34). A 
50-km radius was used to estimate the local population for each city.

Experiment Design

Control strategy allocation has three important fundamental aspects: 
where to allocate control, how much control to allocate to each loca-
tion, and when to allocate control. The “when to allocate” aspect is 
not explored in this paper. Intuitively, the optimal time to implement 
control is closely related to the dynamic progression of the epidemic 
and is a topic of much complexity in itself. For the purpose of this 
study, and because of space limitations, all control measures are 
assumed to be implemented at time step t = 0 and kept at their fixed 
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levels until tobs. The other two aspects, “where to allocate” and “how 
much to allocate,” are explored in the following sections.

For the purposes of this study, a hypothetical epidemic outbreak 
sourced in Austin, Texas, is considered. A set of control strategies, 
which vary in number, location, and level of control, is defined 
and evaluated. In each strategy it is assumed that tobs = 50, that is, 
T ∈ {0, 1, 2, . . . , 50}. This time indicates how far in the future the 
state of the outbreak is evaluated. The relatively short timeline is 
representative of the early stages of an emerging outbreak, which 
is the intended application of the model. However, the observation 
time can be varied to suit the need of the modeler. The outbreak 
modeled is assumed to be caused by a highly contagious disease, 
similar to the recent Ebola outbreak. The recovery rate is assumed to 
be γ = 0.178, which is equal to an infectious period of approximately 
5.6 days. It is assumed that 100 individuals are already infected in 
Austin (i.e., at time t = 0).

As noted previously, the local transmission rate βi for each region 
increases linearly with population density and is assumed to be 
bounded. For this network it is assumed that the lowest transmission 
rate for a region is 0.2 (corresponding to the region at the 5th per-
centile in population size), and the highest value of the rate is 0.35 
(corresponding to the region at the 95th percentile), and for regions in 
between the transmission rate is interpolated linearly between these 
two extreme points, based on population density. These parameter 
values are consistent with the recent Ebola outbreak (35).

Evaluation of Control Strategy Location Selection

Intuitively, applying perfect control at the locations directly con-
nected to the source is the most effective strategy. However, it could 
be prohibitively expensive to apply control at all airports connected 
to a given outbreak source location because of the high connectivity 
of the air traffic network and even more so if there were multiple 
sources. To illustrate and assess the impact of different outbreak con-
trol strategies, the authors propose a range of strategies for selecting 
a subset of airports at which to implement control and compare them 
with respect to their effectiveness in reducing the outbreak impact. 
The five strategies are named random, largest populations, most con-

nected, most through travel, and largest outbreak. For each strategy, 
20 locations are selected. The methods by which these 20 locations 
are selected for each strategy are outlined in Table 1. A baseline strat-
egy is also included for comparison with other strategies. The control 
strategies are assumed to be implemented on candidate locations in 
the United States, with Austin the noted source city.

Each location-based control strategy is evaluated across a range 
of control variables xi,t from 0 to 1, at 0.1 increments. Recall that 
the value of the control variable is the percentage of incoming pas-
sengers screened and detected at a particular location. Hence xi,t = 0 
(0%) represents that no control resource will be placed on a region, 
and xi,t = 1 (100%) represents that all infected passengers coming 
into this region will be detected and quarantined. The same level of 
control is assumed to be placed across all control locations, allow-
ing a comparison of the impact of different levels of control across 
location-based strategies. The results are illustrated in Figure 1. 

TABLE 1    Selection Methods for Location-Based Control Strategies

Location-Based 
Control Strategy Selection Method

Baseline No control is placed. This is the baseline scenario for 
the basis of comparisons with others.

Random Randomly select a set of 20 airports connected to 
source node.

Largest  
populations

Rank all airports connected to source node on the basis 
of their local population and select the top 20 airports.

Most connected 
 

Rank all airports connected to source node on the basis 
of their volume of passenger flows from source 
node and select the top 20 airports.

Most through  
travel 

Rank all airports connected to source node on the basis 
of their total passenger throughput (total of incoming 
and outgoing travelers) and select the top 20 airports.

Largest  
outbreak 
 
 
 

Run the multiscale simulation model for the baseline 
case (without control treatment) and rank all 
airports connected to the source node on the basis 
of the outbreak size (number of individuals infected 
and recovered), at tobs = 50 in each city, and select 
the top 20 airports.

FIGURE 1    Total number of people ever infected for each strategy (size of outbreak at t = 50).
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The x-axis represents the control level and the y-axis represents the 
outbreak size within the United States. Each data series represents a 
location strategy, and each point on the data series corresponds to a 
particular location control level strategy. It should be noted that the 
dashed lines connecting the points are drawn to distinguish between 
data series and do not signify interpolation.

The baseline data series in Figure 1 serves as a basis of compari-
son with other strategies, representing the number of people affected 
by the epidemic when no control treatment is implemented. From 
these results, the reduction in the number of affected individuals for 
each strategy can be assessed.

All strategies reveal a linear relationship with the control variable, 
with a higher level of control expectedly corresponding to a greater 
reduction in outbreak size. The random strategy causes the least 
amount of reductions in outbreak size, while the most through travel 
strategy results in much larger reductions. The most connected, larg-
est population, and largest outbreak strategies show even better out-
comes. The performance of these three strategies is similar because 
the locations selected using these three are similar, meaning many 
places rank high in multiple metrics. The cost-efficiencies of these 
three strategies are much higher than that of the random strategy 
(i.e., the same amount of reduction in the number of people affected 
would require much fewer resources). Out of these three strategies, 
the largest outbreak strategy has the highest cost-efficiency.

Overall, the results illustrate the importance of the selection  
of control locations, especially compared with randomly selected 
locations. However, there is not much difference in the results of 
the best-performing strategies, because of many locations meeting 
multiple criteria for the best location selection. This finding suggests 
that the location-based selection of the best-performing strategies is 
rather robust and can be selected by using a set of heuristic criteria. 
Similar results were obtained when the number of control loca-
tions selected was changed to 10 and 30, but the results are not 
included in this paper because of size limitations. The analysis 
presented in the next section seeks to explore how varying the level 
of control across the best locations affects both cost and efficiency 
of the control.

Evaluation of Control Levels and Control Costs

This section explores the third aspect of control resource allocation: 
how much control resource should be allocated to each location? 
Given that the best-performing locations to implement control can 
be selected, one can then examine the cost-efficiencies of the control 
strategies by keeping the set of chosen locations constant and varying 
the levels of control implemented. The cost-efficiency metric used is 
explained in the discussion of the results later in this section. From 
this the relationship between the cost-efficiencies and the levels of 
controls can be observed. The 20 nodes from the largest outbreak 
set were chosen because of their good performance in outbreak size 
reduction, as shown in the previous section. The control resources 
are assumed to be implemented on these 20 candidate locations 
(Table 2).

The cost of each control strategy is computed on the basis of 
Equation 23, and for this study ci = 10f +

i and g(xi,t) = xi,t + xi,t were 
chosen as the functions for capital investment and screening cost. 
The factor of 10 was chosen so that the capital investment would be 
a nontrivial part of the total cost. The function g(xi,t) = x4

i,t /2 + xi,t was 
chosen because as xi,t increases from 0 to 1, the value of the func-
tion increases slowly initially, but quite rapidly as xi,t → 1. When xi,t 

takes on its maximum value of 1, the value of the function is 1.5, 
meaning the cost of implementing full control would be 50% more 
in total compared with the case where it is assumed that the costs are 
scaled linearly with control ratio [e.g., g(xi,t) = xi,t]. Note that to obtain 
the real cost of the control measure, this function should be further 
multiplied by a factor that could convert this scaled control ratio into 
cost per passenger at that ratio. This factor is assumed to be 1 for the 
purposes of this analysis. These chosen functional forms are used 
to explore how possible scenarios may play out given a reasonably 
assumed cost function and do not represent any specific monetary 
units. Estimating the exact cost of equipment and personnel for airport 
screening is beyond the scope of this study.

To demonstrate the cost-efficiencies of the levels of control applied, 
it is again assumed, as in the previous section, that the same level of 
control ratio is applied at each of the 20 selected nodes. This study 
explored the cost-efficiencies of applying incremental levels of con-
trols on these nodes. These cost-efficiencies are shown in Scenario 1 
to Scenario 10 in Table 3.

The “Total Reduction in Outbreak Size” column of the results 
represents the reduction in outbreak size at tobs = 50 compared with 
the baseline scenario. The “Number of Quarantined Passengers” 
is the total number of infected passengers detected at the nodes 
being selected for passenger screening. The “Normalized Cost of 
Strategy” column shows the normalized cost (as a proportion of the 
strategy with the maximum cost) incurred by each strategy, as cal-
culated from the cost function defined in Equation 23. “Normalized 
Cost Efficiency” is the metric used to measure the cost-efficiency of 
each strategy. It is calculated by dividing the cost of each strategy 
by the “Total Reduction in Outbreak Size” for the corresponding 
strategy, thus providing the average cost per prevented infection, 
again normalized to the maximum value across strategies.

TABLE 2    Top 20 Candidate Locations for Control Measures

Airport 
(IATA 
code) City (Airport)

Population 
(within 50-km 
buffer of airport)

Passenger 
Flow  
(90 days)

LGA New York (La Guardia) 15,763,005 293,246

LAX Los Angeles 10,244,614 179,951

ORD Chicago (O’Hare) 7,807,107 148,741

OAK Oakland 5,459,164 145,810

DFW Dallas (Fort Worth) 6,040,552 98,812

DCA Washington (National) 5,634,567 94,598

LGB Long Beach 11,239,720 45,097

PHL Philadelphia 5,565,904 52,196

BWI Baltimore 5,296,240 48,395

ATL Atlanta 4,020,075 85,918

SAN San Diego 4,568,841 54,717

FLL Fort Lauderdale 4,281,812 130,539

BOS Boston 4,398,340 91,347

PHX Phoenix 4,050,658 70,678

IAH Houston (Intercontinental) 5,298,753 77,715

DEN Denver 2,695,321 91,094

SEA Seattle 3,468,857 83,493

SJC San Jose 3,741,393 27,436

DTW Detroit 4,011,874 47,130

LAS Las Vegas 2,014,875 99,829

Note: IATA = International Air Transport Association.
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Scenario 0 shows the baseline when no control is applied. Sce-
nario 1 to Scenario 10 show incremental increases in the levels of 
control applied on the 20 largest outbreak locations. The cost and 
the number of passengers quarantined increase with the levels of 
control applied. The normalized cost-efficiency is initially high 
when xi,t = 0.1 for all nodes, but it decreases as the levels of control 
increase, and eventually rises again. The initial high cost is caused 
by the significant amount of capital investment required, making it 
inefficient to apply a low level of control on all locations. If higher 
levels of control are implemented, then they are comparatively more 
cost-efficient. However, as the levels of control approach very high 
thresholds, it becomes increasingly costly to ensure that such a large 
percentage of infected passengers can be detected, hence the rise in 
normalized cost-efficiency as xi,t approaches 1. The cost-efficiency 
comparison of Scenario 1 to Scenario 10 shows two important obser-
vations about control resource allocation. The first is that because of 
the initial investment required to set up control at nodes, implement-
ing higher control levels on nodes being controlled could improve the 
cost-efficiency of a strategy. The second is that increasing the levels 
of control beyond a certain point could decrease the cost-efficiency 
by so much that it may offset the benefit of the previously mentioned 
improvement. This point illustrates that there is a balancing point for 
when cost-efficiency would be the highest, depending on the cost 
function and the input of the model. It is not trivial to determine where 
this optimal point is.

Next this paper explores whether better cost-efficiency can be 
achieved by allowing varying levels of control across all the selected 
regions, specifically, if focusing resources on a particular subset of 
regions can yield good strategies. Two scenarios are contrasted, 
as shown in Scenario 11 and Scenario 12. In Scenario 11, control 
resources are allocated to prioritize the control in the first 10 nodes 
by ranking (largest outbreak). In Scenario 12, control resources are 
invested in the second half of the 20 nodes. The former is shown 
to be much more cost-efficient than the latter and also more cost-
efficient than Scenarios 1 to 10. Thus prioritizing the allocation of 
control resources to certain locations may yield better results than 
simple strategies that keep control levels uniform across candidate 
locations.

Scenario 13 offers an interesting comparison with Scenario 11. 
In Scenario 13, the first 10 nodes are assigned the same control 
levels as those in Scenario 11, but the second half of the 20 nodes 
are not controlled at all. This frees up the capital cost spent on these 
nodes, resulting in a higher cost-efficiency. This example shows that 
epidemic control outcome can possibly be improved by eliminating 
inefficient capital investment allocations.

It is worth noting that having high cost-efficiency may not imply 
that a strategy is necessarily better, depending on the total amount 
of budget available. For example, if one compares Scenario 11 and 
Scenario 12, even though the strategy in Scenario 11 is much more 
cost-efficient, the total cost of this strategy is much higher than that 
in Scenario 12. Therefore, depending on the budget, this strategy 
may not even be in the possible pool of candidate strategies. In an 
optimization framework, the best strategy should be the one that is 
the most cost-efficient within the defined cost budget.

Conclusions

This paper proposes a multiscale network modeling framework 
that simultaneously captures the role of local and interregional 
infection dynamics in the global spread of an epidemic within a 
decision-making framework that seeks to identify the optimal out-
break control strategy. A case study is conducted on the U.S. air 
travel network. Outputs from the model provide a means to quan-
tify, evaluate, and rank control strategies with respect to efficiency 
and cost-efficiency. Future work will focus on developing efficient 
optimization algorithms to select the most efficient and afford-
able outbreak control strategies while accounting for all degrees  
of freedom. Different functional forms for the cost function and 
objective functions will be considered.
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TABLE 3    Results with Varying Levels of Control

Scenario Control Strategy

Total Reduction  
in Outbreak Size 
(within United States)

Number of 
Quarantined 
Passengers

Normalized 
Cost of 
Strategy

Normalized 
Cost Efficiency

0 No control applied 0 0 0 na

1 xi,t = 0.1 at all 20 nodes 1,597 30 0.18 0.91

2 xi,t = 0.2 at all 20 nodes 3,174 57 0.24 0.61

3 xi,t = 0.3 at all 20 nodes 4,747 80 0.30 0.51

4 xi,t = 0.4 at all 20 nodes 6,307 99 0.36 0.47

5 xi,t = 0.5 at all 20 nodes 7,873 113 0.43 0.45

6 xi,t = 0.6 at all 20 nodes 9,424 125 0.51 0.44

7 xi,t = 0.7 at all 20 nodes 10,987 134 0.60 0.45

8 xi,t = 0.8 at all 20 nodes 12,551 141 0.71 0.46

9 xi,t = 0.9 at all 20 nodes 14,141 146 0.84 0.49

10 xi,t = 1.0 at all 20 nodes 15,775 154 1.00 0.52

11 xi,t = 0.9 for first 10 nodes, and xi,t = 0.1 for the rest 12,283 109 0.58 0.39

12 xi,t = 0.1 for first 10 nodes, and xi,t = 0.9 for the rest 3,586 120 0.44 1.00

13 xi,t = 0.9 for first 10 nodes, and xi,t = 0.0 for the rest 12,056 104 0.51 0.35

Note: na = not applicable.
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