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ABSTRACT: 1 

This paper proposes a novel framework to estimate trip tables for the strategic user 2 

equilibrium traffic assignment model. The proposed framework uses a bi-level estimation 3 

model, where the upper-level is a new maximum likelihood estimation method and the lower-4 

level is the strategic user equilibrium assignment model which accounts for some aspects of 5 

day-to-day volatility in traffic flow. The maximum likelihood method proposed in this paper 6 

illustrates its ability to utilize information from day-to-day observed link flows in order to 7 

provide a unique estimation of the total trip demand distribution. This is accomplished by 8 

passing the total trip demand distribution to the strategic user equilibrium model to produce a 9 

set of link flow distributions which can then be compared to the link level observations. The 10 

mathematical proof demonstrates the convexity of the model. In addition, a numerical 11 

analysis is conducted on a test network to illustrate the efficiency of the proposed framework.  12 

 13 

Keywords: strategic user equilibrium, O-D estimation, maximum likelihood 14 

  15 
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1. INTRODUCTION 1 
Enhanced origin-destination (O-D) matrix estimation methodologies would be 2 

extremely useful for transportation planning. Traditionally, the O-D matrix is obtained from 3 

plate surveys, household surveys or roadside surveys. Such survey activities may be 4 

financially expensive for large size networks at frequent intervals, and usually suffer from 5 

limited response and sampling coverage. As an alternative, O-D matrix estimation provides a 6 

statistical approach for estimating or calibrating an O-D matrix from observed link flows and 7 

some prior knowledge of the O-D demand. 8 

In this paper, we propose a framework that combines the maximum likelihood method 9 

for O-D matrix estimation and the strategic user equilibrium model (StrUE) for traffic 10 

assignment(1). This framework is hereby referred as MLStrUE. The StrUE model is defined 11 

such that "at strategic user equilibrium all used paths have equal and minimal expected cost". 12 

For each user present in a given demand scenario, their chosen route is followed regardless of 13 

the realized travel demand on a given day. Therefore the link flows will not result in an 14 

equilibrium state in any particular demand realization, but instead equilibrium exists 15 

stochastically over all demand realizations. The StrUE model was proposed to be able to 16 

capture the impact of day to day demand volatility on reliability, and eventually route choice. 17 

Therefore, apart from the O-D splits, a fundamental parameter that needs to be estimated is 18 

the variance in the total trip demand distribution.  19 

An important aspect of the StrUE model is that the total trip demand is assumed to 20 

follow a certain statistical distribution; traditionally a lognormal distribution has been used (2, 21 

3). Under the assumption of a log-normally distributed demand, this paper focuses on 22 

estimating the demand distribution parameters. Note that other distributions can also be used 23 

if they do not change the convexity of the objective function. Only the distribution of the total 24 

trip demand needs to be estimated because for the StrUE model the O-D proportions are 25 

assumed to be fixed. Furthermore, for the StrUE model a log-normally distributed total trip 26 

demand allows for a closed form probability density function of the link flow, which can be 27 

shown to follow a lognormal distribution as well. The direct relationship between the link 28 

flow variables and the total demand in StrUE allows for the use of day-to-day observed link 29 

flows (which in turn provide actual link flow distributions) to calibrate the total demand 30 

distribution. In this study this calibration is accomplished by implementing the maximum 31 

likelihood estimation method, in which we maximize the joint probability of observing all the 32 

link flows within a time period.  33 

A bi-level programming method is proposed to eliminate the impact of strongly 34 

biased initial estimates, where the upper level provides the total demand distribution to the 35 

StrUE model, and the StrUE model can provide link flow distributions to the upper level. A 36 

benefit of the proposed modelling framework includes the incorporation of actual day-to-day 37 

observed link flows and the corresponding distributions, instead of aggregated or averaged 38 

values. Additionally, the performance of the MLStrUE approach can be assessed based on the 39 

accuracy of its estimations for both expected link flows and link flow distributions, which are 40 

a direct output of the StrUE model. 41 

The remainder of this paper includes a literature review of previous relevant research, 42 

presented in Section 2. Section 3 defines the mathematical model and includes a derivation 43 

for the analytical solution to the total demand estimation. Numerical analysis is demonstrated 44 

in Section 4; conclusions and future research are presented in Section 5. 45 

2. LITERATURE REVIEW: 46 
Although the traditional O-D matrix estimation mainly focused on statistical approaches 47 

based on loop counts, a wide range of methods have been explored in previous studies, 48 

including the generalized least square method(4, 5), the maximum likelihood(6), bi-level 49 
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programming approach(7) and maximum entropy(8). Generally the problem is to find an O-D 1 

matrix to optimize an objective function subject to a set of constraints. However, the problem 2 

is often challenging due to the number of observable links in a traffic network typically being 3 

much smaller than the number of O-D pair demands; this means that it may not be possible to 4 

obtain a unique solution from a single set of link counts alone. The problem was further 5 

extended to account for the stochastic nature of observed flows (9, 10). Recently, dynamic 6 

approaches were introduced to account for the time dependent characteristics in the 7 

network(11, 12). However, the application to large scale network and the computation 8 

complexity still remains a problem. 9 

Among the research, relatively little attention has been paid to the higher order of the 10 

variables in a network, such as their variance and covariance that can potentially provide 11 

more constraints to the optimization problem. Cremer and Keller demonstrated that 12 

aggregating or averaging link count data collected over a sequence of time period may lose 13 

some important information.(13). Hazelton (14) proposed a weighted least squares method to 14 

account for the covariance of links, and assumed a parameter to explain the circumstances 15 

when the variance exceeds the mean if a Poisson distribution is used. Bell (15) proposed a 16 

maximum likelihood method and found the analytical solution to the covariance of O-D 17 

matrix by using a Taylor approximation. However, these research contributions still have 18 

some limitations in the assumptions. For example, the O-D demand was assumed to follow 19 

the Poisson or multinomial distribution, which stipulates certain relationships between the 20 

mean and variance of the O-D demand. In the MLStrUE, the O-D demand is assumed to 21 

follow a lognormal distribution, which allows the mean and variance of total demand to be 22 

independent of each other, and assures the non-negativity of the demand. In a well-23 

constructed network, loop detectors can easily provide link counts on a day-to-day basis; 24 

therefore, it is important to consider the variation of link flows and the distribution of O-D 25 

total demand as effective information to calibrate the O-D trip matrix. The proposed 26 

MLStrUE framework estimates the distribution of the total O-D demand and thus 27 

significantly reduces computation complexity. 28 

  Estimation of the O-D trip matrix also requires a proper assignment model. When 29 

applying the assignment model to a large network, realism and computational complexity are 30 

both critical and must be equally considered to determine a model’s practical applicability. 31 

Further, a major complication in transportation modelling is the ability to properly account 32 

for the inherent uncertainties regarding demand (16, 17) and capacity levels (18, 19). 33 

Additionally, as has been noted, uncertainty on these variables directly affects route choice 34 

behaviour (20). It is, therefore, necessary to incorporate these stochastic elements into models 35 

to ensure robust planning capabilities, but to do so in a manner that maintains computational 36 

tractability. The strategic user equilibrium (1) effectively accounts for the impact of demand 37 

uncertainty; the model relies on users minimizing their expected travel time based on the 38 

previous trip experiences in which they have gathered knowledge on demand (daily trips). 39 

The user’s knowledge of each can be represented by a given distribution, with a known 40 

expected value and variance. Based on these known distributions, each user selects a travel 41 

route to minimize their expected travel time subject to Wardrop’s UE conditions.  42 

The contribution of this study can be highlighted as the following: 43 

1) By assuming that the total demand follows a lognormal distribution, we exploit its 44 

positiveness. Additionally, unlike the Poisson distribution, it allows the variance 45 

and the mean of the total demand to be different.  46 

2) We consider the day-to-day link flow variations and use a maximum likelihood 47 

method to relate this information to the total demand distribution. 48 

3) We also apply the strategic user equilibrium model to account for the impact of 49 

variation in demand. 50 
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4) The StrUE model is used to provide link flows according to the estimated total 1 

demand distribution; multiple sets of link flows, thus the link flow distribution, is 2 

generated by sampling the total demand. 3 

3. PROBLEM FORMULATION: 4 
This section defines the mathematical concept of the MLStrUE framework. Table 1 explains 5 

the notations used in this paper. 6 

TABLE 1 Summary of notations. 7 

𝑁 Link (index) set 

𝐾𝑅𝑆 Path set 

A Node (index) set  

𝑝𝑛 Proportion of total demand on link n; P= (𝑝1, … , 𝑝𝑛 ) 

𝑡𝑛 Travel time on link n; t = (…,𝑡𝑛,…) 

𝑡𝑛𝑓 Free flow travel time on link n 

𝑐𝑘
𝑟𝑠 Travel time on path k connecting O-D pair r-s; 𝐜𝑟𝑠= (…,𝑐𝑘

𝑟𝑠 ); 𝐜=(…,𝑐𝑟𝑠,…) 

𝑞𝑟𝑠 Fraction of total trips that are between O-D pair r-s; ∑ 𝑞𝑟𝑠 = 1∀𝑟𝑠  

𝑇 Random variable for total trips with probability distribution 𝑔(𝑇) 

𝑔(𝑇) Lognormal probability density function of the total demand  

𝑥𝑛𝑖  Observed flow on link n, for day i.  

𝑙𝑛 Flow on link n. 

𝑣𝑘
𝑟𝑠 Proportion of flow on path k, connecting O-D pair r-s 

𝐶𝑛 The capacity on link n 

𝛿𝑛,𝑘
𝑟𝑠  

Indicator variable  𝛿𝑎,𝑘
𝑟𝑠 = {

1 𝑖𝑓 𝑛𝑖𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 𝑖𝑛 𝑝𝑎𝑡ℎ 𝑘
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

(∆𝑟𝑠)𝑛,𝑘 = 𝛿𝑛,𝑘
𝑟𝑠 ; 

∆= (… , ∆𝑟𝑠, … ) 

𝜇 
Mean of the corresponding normal distribution, also called the location 

parameter for the lognormal distribution. 

𝜎2  
Variance (= the second central moment) of the corresponding normal 

distribution, also called the scale parameter for the lognormal distribution. 

𝜎 Standard deviation of the corresponding normal distribution 

𝑚𝑇 The expected total demand 

𝑣𝑇 Variance of the lognormal distribution 

𝑚𝑛 The expected link flow on link n. 

𝑣𝑛 The variance of link flow on link n. 

𝑠𝑇 The standard deviation of the total demand 

𝑠𝑛 The standard deviation of link flow on link n. 

𝑐𝑜𝑣 
Coefficient of variation, defined as the ratio of the standard deviation to 

the mean of a variable. 

 It is important to realize that 𝜇 and 𝜎2 , which appear in the equations of the log-8 

normal distribution, do not denote the mean and the variance of the log-normal distribution, 9 

but of the corresponding parameters of the normal distribution. The mean and the variance of 10 

the log-normal distribution are indicated in the following discussion by 𝑚 and 𝑣. 11 

The assignment map in the StrUE model is a vector noted as the link proportions, 12 

which is the proportion of the link flow to the total demand:  13 

 14 

 𝑙𝑛 = 𝑝𝑛𝑇        𝑝𝑛 ∈ 𝑃, 𝑛 ∈ 𝑁               [1] 15 
 16 

http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Mean
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The link proportions are assumed fixed in the O-D matrix estimation problem; hence 1 

each link flow also follows a lognormal distribution if the total demand follows a lognormal 2 

distribution. It has been validated that numerical convolution of lognormal distributions  is a 3 

distribution which follows the lognormal law with a fair approximation(21). The link flow 4 

distribution is related to the total demand distribution by: 5 

 6 

𝑚𝑛 = 𝑝𝑛𝑚𝑇                                                                                                                                               [2] 7 

𝑣𝑛 = 𝑝𝑛
2𝑣𝑇                                                                                                                                                   [3] 8 

 9 

The parameters for the link flow distribution can be obtained by the definition: 10 

𝜇𝑛 = 𝑙𝑛 𝑚𝑛 −
1

2
𝑙𝑛(1 +

𝑣𝑛

𝑚𝑛
2 )                                                                                                      [4] 11 

𝜎𝑛
2 = 𝑙𝑛(1 +

𝑣𝑛

𝑚𝑛
2 )                                                                                                                      [5]  12 

Substitute Eq.2 and Eq.3 into Eq.4 and Eq.5, we have the transformation of the total 13 

demand distribution to link flow distribution: 14 

 15 

𝜎𝑛 = 𝜎𝑇                                                                                                                                                      [6] 16 

𝜇𝑛 = 𝑙𝑛𝑝𝑛 + 𝜇𝑇                                                                                                                                         [7] 17 
 18 

Since each link flow follows a lognormal distribution, the probability of observing 𝑥𝑛 19 

trips on link n is: 20 

 21 

𝑓(𝑥𝑛) =
1

𝑥𝑛𝜎𝑛√2𝜋
𝑒

− 
(ln 𝑥𝑛−𝜇𝑛)2

2𝜎𝑛
2

 𝑛 ∈ 𝑁                                                                                                    [8] 22 

𝑥𝑛-Observed flow on link n 23 

 24 

The joint probability of observing a set of link flows can be obtained by the product of 25 

the probability density functions: 26 

 27 

𝑗(𝑥𝑛) = ∏
1

𝑥𝑛𝜎𝑛√2𝜋
𝑒

− 
(ln 𝑥𝑛−𝜇𝑛)2

2𝜎𝑛
2

   𝑛 ∈ 𝑁𝑛
1                                                                                             [9] 28 

 29 

Furthermore, we may collect more than one set of loop counts, namely the observed 30 

day-to-day link flows. It is therefore necessary to maximize the joint probability of observing 31 

all sets of link flows, in order to reduce the effect of noise and observation failure. Here the 32 

observed link flows are indicated by a n-by-i matrix, n is the number of links and i is the 33 

number of observations: 34 

 35 

𝑥𝑛𝑖 = [

𝑥11 ⋯ 𝑥1𝑖

⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑖

]                                                                                                                           [10] 36 

 37 

The maximum likelihood method here is to maximize the joint probability of 38 

observing all sets of link flows, which is given by the following equation: 39 

 40 

𝑗(𝑥𝑛) = ∏ ∏
1

𝑥𝑛𝑖𝜎𝑛√2𝜋
𝑒

− 
(ln 𝑥𝑛𝑖−𝜇𝑛)2

2𝜎𝑛
2𝑛

1
𝑖
1                                                                                                 [11] 41 

 42 
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Conventionally, we maximize the logarithm of the joint probability, because taking 1 

log of the function won’t change its convexity. By plugging in Eq.6 and Eq.7 into Eq.11 and 2 

changing the signs, the objective function becomes: 3 

 4 

min : 𝐽(𝑡𝑗
∗) = ∑ ∑ ln ( 𝑥𝑛𝑖𝜎𝑇√2𝜋) +

(ln
𝑥𝑛𝑖
𝑝𝑛

−𝜇𝑇)2

2𝜎𝑇
2

𝑛
1

𝑖
1                                                                           [12] 5 

Subject to: 𝜎𝑇 > 0 6 

 7 

To prove the convexity of the objective function, we only need to show that for an 8 

arbitrary x, the function below is convex: 9 

 10 

𝑓(𝜇𝑇 , 𝜎𝑇) = ∑ ln ( 𝑥𝜎𝑇√2𝜋) +
(ln 𝑥−𝜇𝑇)2

2𝜎𝑇
2

𝑛
1                                                                                         [13] 11 

 12 

The Hessian matrix of 𝑓(𝜇𝑇 , 𝜎𝑇) can be found by taking second partial derivatives 13 

with respect to 𝜇𝑗 and 𝜎𝑗: 14 

 15 

𝐻 = [
𝜎𝑇

−2 2𝜎𝑇
−3(𝑙𝑛𝑥 − 𝜇𝑇) 

2𝜎𝑇
−3(𝑙𝑛𝑥 − 𝜇𝑇) 𝜎𝑇

−2 + 3𝜎𝑇
−4(𝑙𝑛𝑥 − 𝜇𝑇)2] > 0                                                              [14] 16 

 17 

The Hessian is positive definite, hence the function is strictly convex. The sum of 18 

several convex functions is also a convex function, therefore we have proved that our 19 

objective function is strictly convex, the unique optimal solution is assured. The optimal 20 

solutions can be found by taking the first derivative with respect to mean and variance of total 21 

demand: 22 

 23 

𝜇𝑇 =
∑ ∑ ln

𝑥𝑛𝑖
𝑝𝑛

𝑛
1

𝑖
1

𝑛𝑖
                                                                                                                                        [15] 24 

𝜎𝑇
2 =

∑ ∑ (ln
𝑥𝑛𝑖
𝑝𝑛

−𝜇𝑇)2𝑛
1

𝑖
1

𝑛𝑖
                                                                                                                              [16] 25 

 26 

Assuming that the StrUE model represents the route choice behaviour, we can then 27 

formulate a bi-level programming problem, where the upper level is the maximum likelihood 28 

demand estimation problem; the lower level is the StrUE model, which has the objective 29 

function: 30 

 31 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝑧(𝑓) = ∑ ∫ ∫ ∫ 𝑡𝑛(𝑝𝑛𝑇) 𝑔(𝑇)𝑑𝑇𝑑𝑓 
∞

0

∞

0

𝑓𝑛

0𝑛𝜖𝑁                                                         [17] 32 

Subject to: 33 

∑ 𝑣𝑘
𝑟𝑠

𝑘 = 𝑞𝑟𝑠       ∀𝑘, 𝑟, 𝑠                                                                                                                    [18]                            34 

𝑣𝑘
𝑟𝑠 ≥ 0                  ∀𝑘, 𝑟, 𝑠                                                                                                                     [19]               35 

𝑝𝑛 = ∑ ∑ ∑ 𝑣𝑘
𝑟𝑠𝛿𝑛,𝑘

𝑟𝑠
𝑘𝑠𝑟                       ∀𝑘, 𝑟, 𝑠                                                                                      [20]     36 

         37 

The fraction of the total demand between O-D pair r-s, namely 𝑞𝑟𝑠 , can be obtained 38 

from the prior estimates, i.e. household survey data, or field experiments. The link travel time 39 

function for the StrUE model is defined by the U.S. Bureau of Public Roads (22) cost 40 

function due to its widespread use in transport planning models: 41 
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 1 

𝑡𝑛(𝑓𝑙𝑜𝑤) = 𝑡𝑛𝑓 [1 + 𝛼𝑡𝑛𝑓 (
𝑓𝑛𝑇

𝐶𝑛
)

𝛽

]                                                                                        [21] 2 

 3 

where 𝛼 and 𝛽 are the parameters for the BPR function.  4 

The objective functions of the upper and the lower levels are both strictly convex, 5 

therefore the model always has feasible solutions. A solution algorithm has been proposed to 6 

the bi-level programming: 7 

Step 1: (Initialization) k=0. Start from the prior O-D matrix; obtain the fraction of 8 

total trips 𝑞𝑟𝑠 and initial values for the mean and the variance of the total demand. Produce a 9 

set of link proportions from the StrUE model. Note that 𝑞𝑟𝑠 will be kept invariant over the bi-10 

level iterations while 𝜇𝑇
𝑘  and 𝜎𝑇

𝑘 will be calibrated. 11 

  Step 2: (Optimization) Substituting the link-flow proportion matrix Pk, solve the 12 

upper-level to obtain 𝜇𝑇
𝑘  and 𝜎𝑇

𝑘 of the total demand. 13 

Step 3:(Simulation) Using 𝜇𝑇
𝑘  and 𝜎𝑇

𝑘, apply the StrUE model to produce a new set of 14 

link flow proportions Pk+1. 15 

Step 4: (Convergence test) Calculate the deviation between simulated and observed 16 

link flows, and the deviation between estimated and target O-D matrices. If  stopping 17 

criterion is met, stop. After enough iteration, the results will always converge. 18 

4. NUMERICAL RESULTS AND ANALYSIS: 19 
The objective of the analysis is to test if the MLStrUE can effectively estimate the total 20 

demand distribution from day-to-day observed link flows. The estimated total demand 21 

distribution should closely approximate the actual total demand distribution; the link flow 22 

distribution produced by the StrUE model should also closely match the observed link flows. 23 

The main idea is to artificially determine the total demand distribution and generate random 24 

link flow samples accordingly. The MLStrUE will reproduce the desired total demand 25 

distribution from the random samples with perturbed prior estimates. The test should also 26 

reflect the scalability of the MLStrUE to networks of substantial complexity.  27 

Numerical tests are conducted on the Sioux Falls network (24 nodes and 76 links). 28 

The network properties are pre-defined in (23) (see Fig.1). The notations used in this section 29 

are defined in Table 1. The O-D demand is specified as proportions of the total network 30 

demand, therefore the demand for a given O-D pair is the O-D proportion multiplied by the 31 

total demand.  The BPR parameters α and β are equal to 0.15 and 4, respectively.  32 

The observed link flows are generated by the following way:  33 

Step 1: The true 𝜇𝑇 , 𝜎𝑇 are determined for the total demand. 34 

Step 2: We implement the StrUE based on the total demand distribution and obtain a 35 

set of link proportions. 36 

Step 3: We generate 100 samples of the total demand from the lognormal distribution 37 

using 𝜇𝑇 , 𝜎𝑇 as parameters and each sample total demand is assigned to the network using the 38 

pre-calculated link proportions. 39 
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 1 
                                       FIGURE 1 The Sioux Falls network. 2 

 3 

The actual expected total demand of the Sioux Falls network is 𝑚𝐴 = 360600, and 4 

the coefficient of variation 𝑐𝑜𝑣  is equal to 0.2, i.e. the standard deviation is 20% of the 5 

expected total demand. In Table 2, each scenario represents a different initial estimate of the 6 

total demand distribution. 7 

TABLE 2 Different scenarios of initial estimation of O-D matrix 8 

Scenario Scenario description 𝑚𝑇  𝑠𝑇 

1 𝑚𝑇 = 0.8𝑚𝐴 𝑎𝑛𝑑 𝑐𝑜𝑣 = 0.1 288480 28848 

2 𝑚𝑇 = 0.8𝑚𝐴 𝑎𝑛𝑑 𝑐𝑜𝑣 = 0.3 288480 86544 

3 𝑚𝑇 = 1.2𝑚𝐴 𝑎𝑛𝑑 𝑐𝑜𝑣 = 0.1 432720 43272 

4 𝑚𝑇 = 1.2𝑚𝐴 𝑎𝑛𝑑 𝑐𝑜𝑣 = 0.3 432720 129816 

5 𝑚𝑇 = 1.5𝑚𝐴 𝑎𝑛𝑑 𝑐𝑜𝑣 = 0.1 540900 54090 

6 𝑚𝑇 = 1.5𝑚𝐴 𝑎𝑛𝑑 𝑐𝑜𝑣 = 0.3 540900 162270 

 In Fig.2 and Fig.3, the x-axis represents the number of iterations of the bi-level 9 

programming. In Fig.2, the y-axis represents the estimated expected total demand; In Fig.3, 10 

the y-axis represents the estimated standard deviation of the total demand. Both figures show 11 

that the estimated results converge to the actual ones in less than 3 iterations. This indicates 12 

that the MLStrUE’s robust performance against biased initial estimates, and demonstrates the 13 

efficiency in arriving at convergence. In scenario 1 and 2, the estimated results of the first 14 

iteration in both figures are very different from the actual ones. This is mainly because the 15 

link proportions of the first iteration are obtained based on the initial estimates, and the initial 16 

estimates in scenarios 1 and 2 are very biased, and therefore the results of the first iteration 17 

will be inaccurate. If the initial estimates of total demand distribution are quite different from 18 

the actual distribution, the estimation of both expected total demand and standard deviation of 19 

total demand will be very inaccurate, therefore we have shown that applying the bi-level 20 

programming can reduce the impact of biased initial estimates. 21 

 22 
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 1 
FIGURE 2 Estimated expected total demand under different scenarios of initial 2 

estimation; results of 10 bi-level iterations are presented. 3 

 4 
FIGURE 3 Estimated standard deviation of total demand under different scenarios of 5 

initial estimation; results of 10 bi-level iterations are presented. 6 

Fig.4 demonstrates the performance of the MLStrUE at the link level; the x-axis 7 

indicates the actual expected link flow while the y-axis represents the estimated expected link 8 

flow. The estimated link flows are analytically produced by the StrUE model based on the 9 

total demand distribution after the convergence criterion has been met. The estimated 10 

expected link flows and the corresponding actual expected link flows are sorted from the 11 

smallest to the largest. The R squared value of the results is equal to 0.9837, which is very 12 
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close to 1. This indicates that the estimated results closely approximate the actual expected 1 

link flows. 2 

 3 
FIGURE 4 The estimated and actual expected link flow comparison, estimated results 4 

are produced by the StrUE model based on estimated demand distribution. 5 

 One of the strengths of the StrUE model is that it can produce the link flow variation. 6 

Since the total demand distribution is calibrated based on day-to-day observed link flows, it is 7 

therefore necessary to compare the estimated standard deviation of link flow to the actual one. 8 

In Fig.5, the estimated standard deviation of link flow is produced by the StrUE model based 9 

on the total demand distribution after the bi-level convergence criterion has been met. The x-10 

axis denotes the actual standard deviation of link flow while the y-axis indicates the estimated 11 

one. It is illustrated in the figure that despite the fact that the R squared value is smaller than 12 

that of the expected link flow; the MLStrUE still provides relatively reliable estimation, 13 

however, if the standard deviation of link flow is very high, the estimated results may be 14 

more than 20% different from the actual ones. 15 
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 1 
FIGURE 5 The estimated and actual standard deviation of link flow comparison, 2 

estimated results are produced by the StrUE model based on estimated demand 3 

distribution. 4 

5. CONCLUSION: 5 
This paper proposes a methodological framework (MLStrUE) to estimate the travel demand 6 

distribution (trip table) based on day-to-day observed link flows. The estimated total demand 7 

distribution maximizes the joint probability of observing all link flows. A bi-level 8 

programming method is also included to reduce the impact of biased initial estimates of the 9 

total demand distribution. A numerical analysis is conducted on a test network, and results for 10 

both the system level and the link level demonstrated robust performance of the MLStrUE 11 

framework. In the numerical experiment, the estimated mean and standard deviation of the 12 

total demand converged to the desired values regardless of the initial estimates after 2 or 3 13 

iterations. Similarly, the link level analysis produced R squared values of 0.9837 and 0.942, 14 

for the expected value and standard deviation of link flows, respectively. Based on the results, 15 

the estimated link flow distribution closely approximates the actual link flow distribution, 16 

suggesting that the MLStrUE can calibrate the total demand effectively and efficiently. 17 

One limitation of the MLStrUE is the assumption of perfect traffic loop count 18 

information. In this model, we generate loop counts by sampling from the results of the 19 

assignment model based on actual demand distribution, which may not reflect real world 20 

condition. In reality, the loop counts of some minor roads, or smaller regional roads might be 21 

missing in practice, and the failure of the loop detectors may also have impact on the results. 22 

The error may be reduced via statistical approaches such as outlier detection or noise analysis. 23 

Another limitation is that the prior estimates of demand proportions may influence the results. 24 

A real-world data set may be used in the future to validate the framework proposed here. 25 

Future research will investigate the use of the covariance of loop counts, that is, if we 26 

have a large enough sample size, then the covariance matrix of link flows can be generated. 27 

This can potentially provide much more information than only mean and variance of link 28 

flows. Furthermore, the O-D demand may be assumed to follow a multivariate lognormal 29 

distribution, in this way the O-D demand is no longer aggregated as was the case with 30 

univariate lognormal distribution, possibly providing the covariance matrix of the link flows. 31 
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Since the OD estimation problem is a combination of a statistical optimization model and a 1 

traffic assignment model, an improvement in either process warrants further research. 2 
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