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Abstract Real-time control of infectious disease outbreaks represents one of the
greatest epidemiological challenges currently faced. In this paper we address the
problem of identifying contagion patterns responsible for the spread of a disease in
a network, which can be applied in real-time to evaluate an ongoing outbreak. We
focus on the scenario where limited information, i.e. infection reports which may or
may not include the actual source, is available during an ongoing outbreak and we
seek the most likely infection tree that spans at least a set of known infected nodes.
This problem can be represented using a maximum likelihood constrained Steiner
tree model where the objective is to find a spanning tree with an assignment of inte-
ger nodes weights. We propose a novel formulation and solution method based on a
two-step heuristic which (1) reduces the initial graph using a polynomial time algo-
rithm designed to find feasible infection paths and (2) solves an exact mixed integer
linear programming reformulation of the maximum likelihood model on the result-
ing subgraph. The proposed methodology can be applied to outbreaks which may
evolve from multiple sources. Simulated contagion episodes are used to evaluate the
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performance of our solution method. Our results show that the approach is computa-
tionally efficient and is able to reconstruct a significant proportion of the outbreak,
even in the context of low levels of information availability.

Keywords Contagion patterns · Social contact networks · Network optimization ·
Integer programming · Shortest path

1 Introduction

Infectious diseases pose an increasing risk to humans due to a growing world popu-
lation, increasingly dense urban environments, and highly connected global transport
systems which together provide the necessary groundwork for a global epidemic.
Over the past decades copious research efforts have contributed to the development
of contagion models for predicting the expected spreading behavior of infectious
diseases by exploiting population demographics, human travel patterns, social inter-
actions and properties of the disease itself. These models are used to assess various
disease prevention, intervention and response strategies. The same models however,
are unable to reconstruct the contagion process of an ongoing outbreak in order
to reveal the spatiotemporal transmission patterns within a given population. We
address this gap in the literature with the development of an optimization based
solution method designed to identify the most likely infection path of a disease in a
network. In particular, we focus on the scenario in which only a limited amount of
the infection-related information is available, i.e. we assume that the infection status
of only a subset of the population is known, which is often the case in real-world
outbreaks.

In this paper, we propose a new combinatorial approach to quantify the like-
lihood of possible disease transmission patterns in social contact networks. Our
solution method utilizes the network topology (e.g. nodes, links), estimated disease
parameters (e.g. transmission probabilities, infectious period) and available infec-
tion reports (e.g. node status information, time of infection) to evaluate a region
that has been exposed to infection. Our objective is to find the set of links span-
ning to all known infected nodes which maximizes the likelihood of the infection
pattern. We formulate this maximum likelihood problem as an Integer Program (IP)
and introduce a novel model which improves upon previous works by relaxing the
assumption that the source(s) of the infection are known; and propose a tailored
heuristic algorithm to reduce the solution search space. From a mathematical perspec-
tive, the problem considered in this study is closely related to a constrained Steiner
tree problem, where a directed tree with an assignment of integer node weights
is sought. The solution method developed is based on a k-shortest path algorithm
which attempts to find feasible infection paths between known infected nodes and
then solve an exact reformulation of the IP into a Mixed-Integer Linear Program
(MILP) on the subgraph induced by the collection of such paths. The performance
of the solution method is measured by quantifying its ability to accurately identify
the observed infection pattern. The solution method is shown to be able to reveal a
significant portion of the set of links and nodes responsible for having spread the
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disease. Furthermore, the methodology can account for missing infection informa-
tion, enabling epidemiologists to better understand and anticipate disease transmis-
sion patterns during an ongoing outbreak and offer insights into the success of
outbreak control measures.

We start by reviewing the literature on the modelling of contagion processes
and on the optimization problems that unfold in our approach (Section 2). We then
introduce the epidemiological context of this research as well as the mathematical
formulation of the maximum likelihood model (Section 3). The solution method is
presented in two steps (Section 4): (1) the mathematical properties of feasible infec-
tion paths are assessed and a polynomial time graph reduction algorithm is presented
and (2) an exact MILP reformulation of the initial IP is proposed to improve com-
putational performance. Network topology and disease parameters are introduced in
the validation framework (Section 5) and the results obtained after the implementa-
tion of our solution method are then presented (Section 6). Finally, the contributions
of this research is discussed and summarized (Section 7).

2 State of the Art

In this section we review the literature on epidemic modelling and discuss the
position of this work with regards to network optimization problems.

2.1 Contagion Processes Modelling

Dynamic contagion processes impact copious network systems, and are therefore
the focus of various studies within the emerging field of network science. In addition
to the transmission of infectious disease through communities and biological sys-
tems (Anderson and May 1991; Murray 2002), the spread of information, ideas and
opinions via social networks can also be modelled as a contagion process (Coleman
et al. 1966; Hasan and Ukkusuri 2011); as well as the global spread of computer
viruses on the Internet network (Newman et al. 2002; Balthrop et al. 2004); power
grid failures in electricity markets (Sachtjen et al. 2000; Kinney et al. 2005); and the
collapse of financial systems (Sornette 2003).

Another emerging area of research is the spatial analysis of networks, such
as transport and communication networks (Gastner and Newman 2006; Schintler
et al. 2007; Erath et al. 2009), including social network modelling, specifically the
ability to reproduce spatial structure and interaction between individuals for large-
scale social networks (Illenberger et al. 2013). Furthermore, the ongoing develop-
ment of activity-based travel models, which examine why, where and when various
activities are engaged in by individuals (Lam and Huang 2003; Roorda et al. 2009;
Ramadurai and Ukkusuri 2010), as well as innovations in pedestrian modeling
(Hoogendoorn and Bovy 2005) present additional promising alternatives to generate
social contact networks in the future. Wesolowski et al. (2014) highlight the value of
mobile network data for modelling human mobility patterns in real time, the results
of which can be used in designing surveillance and containment strategies during
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an outbreak. The authors constructed intra and international mobility patterns in the
set of African countries affected by and surrounding the Ebola outbreak. Their work
exemplifies the role of increasingly available real-time connectivity data in public
health response. However, in order to exploit these data sets to their full potential in
disease mitigation and control efforts, real-time outbreak prediction models, such as
that proposed in this paper, must be developed.

Published contagion prediction models span from extremely generalized and sim-
plified analytical models to increasingly in-depth stochastic agent based simulation
tools. Analytical models are used to quantify the statistical properties of epidemic
patterns (V C and M B 2006; D B et al. 2009; Broeck et al. 2011); however, they
are unable to capture certain behavioral aspects of the dynamics of disease spread-
ing, and often lack detailed information about the network structure. In contrast,
agent based simulation models can be used to replicate possible spreading scenar-
ios, predict average spreading behavior, and analyze various intervention strategies
for a given network and disease while capturing a greater degree of detail, but in turn
require a highly detailed set of input data (Cummings et al. 2002; DT et al. 2003;
Eubank et al. 2004; Dunham 2005; Ferguson et al. 2006; Roche et al. 2011). The most
recent and comprehensive models provide a greater degree of realism, but are diffi-
cult to implement within the short time frames in which real time control decisions
must be made. Large scale simulation models can also be computationally taxing
because multiple runs are required to accurately predict expected outcomes.

There currently exists a gap in the literature which calls for scenario specific
disease prediction models. Most contagion models predict future potential outbreak
scenarios based on system-wide information; however, they are not able to recon-
struct the contagion process of an ongoing outbreak to reveal information about
the current state of the network. Recent advances in disease modelling have begun
addressing this issue. For example, there are models which use genetic sequencing
data to analytically infer the geographic history of a given virus’ migration (DT et al.
2003; AJ D 2007; Wallace et al. 2007; P et al. 2009). Often this approach involves
first enumerating all possible evolutionary trees, then assigning posterior probabil-
ities based on specifics of the respective virus’ mutation rates. Additionally the
infection trees only include locations where samples were available. Luo et al. (2013)
developed a solution method to identify infection sources and regions in networks
based on probabilistic estimators. They approximate an infection source estimator
for the class of geometric trees and derive an algorithm to estimate the actual num-
ber of sources of infection and their identities. Jombart et al. (2009) proposed an
innovative approach to reconstruct the spatiotemporal dynamics of outbreaks from
sequence data by inferring ancestries directly between strains of an outbreak using
their genotype and collection date. The “infectious” links were selected such that the
number of mutations between nodes is minimized. This study is motivated by the
need to track viruses through space and time in order to aid in the implementation of
real-time containment strategies. Often the required genetic data and mutation based
statistical properties are unavailable, or impossible to gather within the required time-
frame. The proposed approach relies instead on available infection reports, network
topology and disease properties to infer the spatiotemporal path of infection through
a network.
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2.2 Related Network Optimization Problems

Using infection data to reconstruct the infection tree of a contagion process can be
approached with mathematical optimization techniques. Indeed, identifying the most
likely infection links responsible for the spread of a disease in a network is closely
related to finding the maximum cost spanning tree (Graham and Hell 1985) to all
infected individuals, where the cost on the links represents the likelihood of the link
to have spread the disease. Gardner L M et al. (2014) proposed an efficient solution
method for this problem when all the infected individuals are known which is based
on an optimum branching strategy. In Gardner et al. (2012), a novel application of the
full information problem was addressed, where the objective was to infer the most
likely air travel routes responsible for spreading the Swine Flu to unexposed geo-
graphic regions, and the network structure was defined by the air traffic system. In the
context of epidemic modelling, it is seldom that the status of all infected individuals
is known; hence it is critical to address the scenario where only partial information
on the population is available. This more general problem can be represented as a
Steiner Tree Problem (STP) (Hwang and Richards 1992), where Steiner nodes rep-
resent individuals whose infection status is unknown, which is NP-Hard (Garey and
Johnson 1977).

Infection patterns of disease spreading processes are dependent on the parameters
of the disease (exposed and infectious periods, transmission probabilities), therefore
feasibility challenges arise in the search for valid infection paths. As such, the recon-
struction of contagion processes with limited information is structurally similar to a
constrained STP. The resource constrained STP has been introduced by Rosenwein
and Wong (1995); in their formulation, the authors attribute a resource for each link
in the network and ask for the minimum cost Steiner tree such that the total amount
of resources used in the tree does not exceed a given threshold. The authors dis-
cuss the efficiency a Lagrangian relaxation versus a Lagrangian decomposition of
the problem. Voss (1999) focused on the hop-constrained STP, which can be seen
as special case of the resource constrained STP where every resource is set to a
unit cost, and presented a dynamic tabu search heuristic. Several new techniques
have emerged to address the resource-constrained and the diameter-constrained STP
(Gouveia and Magnanti 2003; Santos et al. 2010; Gouveia et al. 2011), in these
formulations the resource constraint is imposed on the entire tree. In contrast, we
require a Steiner tree and an assignment of integer nodes weights to Steiner nodes
such that each path from a root node to a leaf of the tree respects some feasibility
constraints.

In this study, we address the problem of finding the Most Likely Infection Tree
(MLIT) that spans to all known infected nodes in a network where the available
information (e.g. node status and time of infection) enforces timestamp constraints
on the infection tree. Fajardo and Gardner (2013) designed a heuristic approach to
solve a relaxed version of the MLIT. We extend that line of research by introducing
a new solution method that is based on a polynomial-time graph reduction algorithm
and an exact MILP reformulation of the initial model. In the next section we present
the epidemiological context of this study and the mathematical formulation of the
maximum likelihood model.
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3 Problem Formulation

In this section, we first define the mathematical problem of interest using graph the-
oretical concepts. We then describe how this combinatorial problem can be matched
to the epidemiological problem of finding the most likely infection tree responsible
for the spread of a disease in a network with limited information and introduce a
mathematical programming model to represent this problem.

Table 1 provides a summary of the acronyms and the mathematical notation used
throughout the paper. Note that acronyms and symbols are defined in the paper when
necessary. Note that throughout the paper, we use the word “source(s)” to refer to
the actual individual(s) responsible for the initial introduction of the disease within
the population (i.e. first case(s)) and the word “root(s)” to refer to origin nodes of
infection paths which are used in the proposed solution method.

3.1 Mathematical Definition

We assume a directed weighted graph and seek a directed tree in this graph which
spans at least a subset of the nodes, and an assignment of integer weights to the nodes
in the tree. This directed tree should maximize a link-based likelihood function and
respect link-feasibility constraints. The combinatorial problem of interest is therefore
similar to a constrained STP and is formally defined as follows.

Definition 1 (Maximum Likelihood Constrained Steiner Tree Problem) Given a
graph G = (N, A) with a subset of nodes I ⊆ N , we seek to find a directed Steiner
tree spanning the nodes in I and an assignment of integer node weights ti , ∀i ∈ N

such that the relative weight of each link in the tree Δtij = tj − ti is feasible, i.e.
appropriately lower and upper bounded. The objective function of this problem is to
maximize the likelihood function

∏
(i,j)∈A λij where for each link (i, j) ∈ A λij is a

function of the relative weight Δtij .

We next show how this maximum likelihood constrained STP can be adapted to
represent the problem of identifying the most likely infection tree in an epidemiolog-
ical context.

3.2 Epidemiological Model

We are concerned with the problem of reconstructing the path of infection of
a disease in a network given that its source(s) is unknown and its spread can
be represented by a stochastic process. To reproduce the spread of infectious
diseases in networks, we use a generic compartmental model. The Susceptible-
Exposed-Infectious-Recovered (SEIR) model (Anderson and May 1991) is a
well-established stochastic simulation model used in the epidemiological liter-
ature to model the progress of an epidemic in a large population. The SEIR
model considers a fixed population of individuals which can be broken into four
compartments:
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Table 1 Acronyms and
Mathematical Notation MLIT Most Likely Infection Tree

SP Shortest Path

FIP Feasible Infection Path

SFIP Shortest Feasible Infection Path

STP Steiner Tree Problem

SEIR Susceptible-Exposed-Infected-Recovered

OD Origin-Destination

IP Integer Program

MILP Mixed Integer Linear Program

L Disease exposition period (in timesteps)

D Disease infection period (in timesteps)

N Set of nodes

A Set of arcs

G Graph G = (N,A)

I Set of information nodes: I = Ii ∪ In

Ii Set of infected information nodes

Ie Set of earliest infected information nodes: Ie ⊆ Ii

In Set of non-infected information nodes

Rs Set of possible roots for leaf node s ∈ Ii

K Maximum number of FIP per OD pair

Prs Path from node r to node s

Hrs Minimum number of hops for OD pair (r, s)

Hrs Maximum number of hops for OD pair (r, s)

T � Optimal oubreak tree

T obs Observed oubreak tree

pij Probability of node i infecting node j

λij Likelihood of node i infecting node j

Ti Known timestamps of information node i ∈ I

ti Integer variable representing the timestamp of node i

Δtij Relative timestamp variable for arc (i, j)

xij Binary variable equal to 1 if arc (i, j) ∈ T � and 0 otherwise

– S (Susceptible): the individuals are susceptible to the disease and have never been
infected.

– E (Exposed): the individuals have been infected but are not yet contagious. We
assume that individuals remain in this compartment for a period of L time steps.

– I (Infectious): the individuals have been infected and are contagious. We
assume that individuals remain in this compartment for a period of D time
steps.

– R (Recovered): the individuals have been infected and are now recovered or
removed. These individuals are not capable of spreading the disease.
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The flow of the SEIR model can then be represented as

S → E → I → R (1)
Both L and D are parameters in the model expressed in units of time and are

assumed to be disease-specific. L represents the incubation period, or the minimum
number of time steps before a newly infected individual may infect a susceptible indi-
vidual. At each time step, every infectious individual attempts to infect its neighbors
in the network. The maximum number of infection trials between any two individuals
is bounded by parameter D which represents the infectious period. The SEIR model
assumes that individuals can only be infected by a single other individual, hence the
topology of the infection induced by this model is a tree. Furthermore, we assume
that an individual cannot be infected and become infectious at the same time step.

Our objective is to reconstruct the spreading pattern of an outbreak in a network
where only limited information is available, i.e. where only a subset of the popula-
tion’s status is known. This approach is motivated by the more realistic setting in
which only a subset of infected individuals report to public health authorities, whether
due to limited medical accessibility or asymptomatic cases.

3.3 Problem Notation and Information Availability

To match this epidemiological problem to the maximum likelihood constrained STP,
we assume that every node i ∈ N represents an individual; every link (i, j) ∈ A

is a relationship among two individuals and that each link is weighted by a disease
transmission probability. Namely, pij , ∀(i, j) ∈ A is the probability that individual i

infects j at each time period. Assuming that time can be discretized, the integer node
weights ti , ∀i ∈ N represent the time of infection (timestamp) of each node in the
network.

Using the terminology of the SEIR compartmental model, the state (e.g. infected,
recovered) of a subset of individuals I ⊆ N is assumed known, and for the known
infected individuals their timestamp is also assumed known. These nodes are hereby
referred to as information nodes. If an individual i ∈ N has been infected by the
disease (e.g. i is in state E,I or R), its timestamp is represented by a fixed integer
weight Ti ∈ Z, else if i has never been infected, we set Ti → ∞. In turn, any node
in N \ I may or may not have been infected, this subset is referred to as the set of
zero-information nodes and is equivalent to the set of Steiner nodes.

Let Ii ⊆ I be the set of infected information nodes and let In ⊆ I be the set of
non-infected information nodes (Ii ∪ In = I ). Let ti ∈ Z be a decision variable rep-
resenting the timestamp of individual i ∈ N ; the value of ti depends on the available
information, namely:

∀i ∈ N, ti ≡
⎧⎨
⎩

Ti ∈ Z if i ∈ Ii

Ti → ∞ if i ∈ In

∈ Z otherwise
(2)

Hence if i ∈ N \ I , ti is represented by an integer decision variable. The proposed
model works from a set of information nodes and seeks to reconstruct the spread
of the disease from the earliest known infected nodes to the latest known infected
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nodes. We define the set of earliest infected information nodes Ie ⊆ Ii as: Ie ≡
argmini∈Ti

{Ti}. Without any loss of generality we can set Ti = 0, ∀i ∈ Ie and define
T = maxi∈Ii

{Ti} as the last known timestamp. We next introduce the probabilistic
inference model used to estimate the likelihood of an infection tree.

3.4 Maximum Likelihood Model

To find the MLIT of an outbreak in a network, we seek to determine the probability
that a node has been infected by its neighbor during the spread of the disease. We
can extend the definition of feasible link to the epidemiological context presented in
Section 3.2; we define a feasible infection link as follows:

Definition 2 (Feasible Infection Link) Let (i, j) ∈ A, be a link of the network. (i, j)

is a feasible infection link if and only if

L � Δtij � L + D − 1 (3)

Equation 3 states that node j may have been infected by i only if their timestamp
difference is greater than L or if it is lower than L + D − 1, which corresponds to
an interval of D − 1 time steps. Recall that we assume that that a node cannot be
infected and infect an adjacent node at the same time step, which is equivalent to
assume that L � 1. Using the link transmission probability pij ; the probability αij

that j is infected by i is then

αij = pij (1 − pij )
(Δtij −L)+ (4)

where (X)+ ≡ max{X, 0}. (Δtij − L)+ is the number of unsuccessful trials between
nodes i and j given that eventually one trial is successful. To account for the
event that a node is not infected during the outbreak, we introduce the associated
probability γij as

γij = (1 − pij )
min{D,(Δtij −L+1)+} (5)

where min{D, (Δtij − L + 1)+} is the maximum number of unsuccessful infection
trials between nodes i and j . In order to account for both probabilities in the model,
we combine αij and γij in a single expression. As αij and γij are complementary,
that is, only one of these events can occur; we introduce a binary decision variable
xij to model this relationship. Let T � be the optimal infection tree, we define

∀(i, j) ∈ A, xij ≡
{

1 if (i, j) ∈ T �

0 otherwise
(6)

xij are the main decision variables in the model as they define the resulting infection
tree T �. We define the likelihood of the infection tree as the product of probabili-
ties αij and γij over all the links in the network. Our objective is to maximize this
likelihood, hence we introduce the likelihood function λij (xij , Δtij ) defined as

λij (xij , Δtij ) ≡ α
xij

ij γ
(1−xij )

ij (7)
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Let Γ +(i) and Γ −(i) be the sets of successors and predecessors of node i ∈
N in graph G, respectively. To find the MLIT of an outbreak, we propose the IP
summarized in Model 1. Objective function (8) maximizes the likelihood that the
set of links (i, j) for which xij = 1 infers the correct infection tree. Constraints
(9), (10) and (11) are the feasibility constraints and require that each link in the
tree is a feasible infection link as defined by Eq. 3. Constraints (12) to (15), hereby
referred to as the tree constraints ensure that T � is a directed tree spanning at least
all infected information nodes. Constraints (16) and (17) enforce that the timestamps
of information nodes are fixed; whereas constraints (18) and (19) ensure that the
timestamp of zero-information nodes is in the range [0, T ]. These constraints are
hereby referred to as the timestamps constraints.

Model 1 (IP for the MLIT)

max
∏

(i,j)∈A

p
xij

ij (1 − pij )
xij (Δtij −L)+(1 − pij )

(1−xij ) min{D,(Δtij −L+1)+} (8)

subject to

xij (Δtij − L) � 0 ∀(i, j) ∈ A (9)

xij (Δtij − D − L + 1) � 0 ∀(i, j) ∈ A (10)

Δtij = tj − ti ∀(i, j) ∈ A (11)∑
i∈Γ −(j)

xij = 1 ∀j ∈ Ii \ R (12)

∑
i∈Γ −(j)

xij = 0 ∀j ∈ In (13)

∑
i∈Γ −(j)

xij � 1 ∀j ∈ N \ I (14)

∑
i∈Γ −(j)

xij � xjk ∀j ∈ N \ R, k ∈ Γ +(j) \ R (15)

ti = Ti ∀i ∈ Ii (16)

ti = T ∀i ∈ In (17)

ti � T

(
1 − ∑

j∈Γ −(i)

xji

)
∀i ∈ N \ I (18)

ti � T ∀i ∈ N \ I (19)

ti ∈ Z
+ ∀i ∈ N (20)

Δtij ∈ Z ∀(i, j) ∈ A (21)

xij ∈ {0, 1} ∀(i, j) ∈ A (22)

Proposition 1 (Subtour Elimination) If L � 1, then Model 1 produces an optimal
directed tree without any subtours.
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Proof The proof follows from the definition of feasible infection link. Assume by
contradiction that the links (1, 2), (2, 3) and (3, 1) form a subtour in the optimal tree,
i.e. x12 = x23 = x31 = 1. Constraints (9) and (10) impose that:

L � Δt12 � D + L − 1 (23)

L � Δt23 � D + L − 1 (24)

L � Δt31 � D + L − 1 (25)

Since Δtij = tj − ti , t2 � t1 + L and t3 � t2 + L, hence t3 � t1 + 2L. Similarly
t1 � t3 + L, which leads to a contradiction if L � 1.

Model 1 can be used to infer the MLIT for outbreaks with any number of sources
of infection since no information on the source(s) of the infection is assumed. If
every node of the network is an information node, that is I = N , solving Model 1
is equivalent to finding the most likely spanning tree to all infected individuals. In
this scenario, all variables ti are fixed, hence xij are the only decision variables. It
should be noted that instances can be pre-processed: non-infected information nodes
i ∈ In as well as infeasible links between two infected information nodes i, j ∈ Ii

can be removed from the network to improve computational performance. Neverthe-
less, in the general case, i.e. in the presence of zero-information nodes, the problem
represented by Model 1becomes intractable on large instances. Furthermore, this
maximum likelihood can rapidly lead to scenarios where multiple optimal trees with
the same likelihood coexist, as illustrated in Example 1.

Example 1 Consider the network depicted by Fig. 1, which represents a partial
information case study. In this example, each link has a specified transmission prob-
ability: nodes A and D are known to be infected with corresponding timestamps
of 0 and 3, respectively, and nodes B and C are zero-information nodes. The epi-
demiological parameters are L = 1 and D = 2. For this simple network structure
and information scenario there are twenty feasible infection trees. More impor-
tantly, for a range of specified transmission probabilities there are multiple trees
which have equal and maximum likelihoods. For instance, for the set of transmis-
sion probabilities (p1, p2, p3, p4, p5) = (0.2, 0.3, 0.5, 0.2, 0.3), there are four
equally likely and optimal infection trees with a likelihood of 0.05136. These four
trees and their likelihood are detailed in Fig. 2. Recall that for link l, pl repre-
sents a successful infection trial whereas (1 − pl) represents an unsuccessful trial.
This example shows that even on simple networks several optimal solutions may
coexist.

X zero-information node
X infected-information node

t timestamp
A

B

C

Dt=0 t=3

p
4

p
1

p
3

p
2

p
5

Fig. 1 An example network and information scenario
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Fig. 2 Multiple maximum likelihood trees for the example network and information scenario depicted in
Fig. 1

The presence of multiple optimal trees may significantly burden the resolution of
Model 1 as global optimality can be computationally expensive to prove. To solve
this maximum likelihood problem on large networks we propose an efficient heuris-
tic to reduce the size of the initial graph and present an exact mixed integer linear
reformulation of Model 1. The resulting solution method is then implemented and
evaluated on multiple outbreak scenarios.

4 Solution Method

In this section, we present a new solution method to solve Model 1. Due to the
potentially large number of Feasible Infection Path (FIP) between any two infected
information nodes in networks with limited information, we propose to restrict the
search to a set of good candidates. To do so, we stress the impact of the hop-distance
on the likelihood of a FIP in the objective function. The hop-distance between two
nodes in an unweighted graph can be defined as the number of links in the Shortest
Path (SP) connecting them. While the length of a path is not the only criterion to eval-
uate its likelihood, it is reasonable to assume that the longest FIP is most certainly
not the most likely. This hypothesis is driven by the fact that the contribution of each
link in the objective function is determined by a product of probabilistic quantities.
Hence an increase in the hop-distance of a FIP will most likely reduce the likeli-
hood of the path in objective function (8). To find a FIP, we proceed from the set of
information infected nodes Ii and for each leaf s ∈ Ii we identify a set of possible
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roots Rs ⊆ Ii which may have been responsible for the spread of the infection to this
leaf. Our solution method is based on this heuristic approach and can be decomposed
into two main steps:

1. for each leaf node and for each possible root node for this leaf, find (at most)
K shortest FIP for this Origin-Destination (OD) pair using a polynomial time
constrained shortest path algorithm;

2. solve an exact linearization of Model 1 on the subgraph formed by all the FIPs
found at Step 1 using a generic Branch & Bound & Cut algorithm for MILPs.

We next present the details of each step of the proposed solution method.

4.1 Graph Reduction Algorithm

We first formally extend the concept of link-feasibility to path-feasibility.

Definition 3 (Feasible Infection Path) Let Prs be a path from node r to node s, path
Prs is a Feasible Infection Path (FIP) if

∀(i, j) ∈ Prs , L � tj − ti � L + D − 1 (26)

In the context of outbreaks with limited available information, a link from or to a
zero-information node is potentially feasible, hence it is not straightforward to eval-
uate the feasibility of an infection path from or to a zero-information node. However
the feasibility of an infection path between an OD pair, i.e. infected information
nodes, can be decided efficiently. We first consider the elementary case where a sub-
path between two infected information nodes is composed of zero-information nodes
only.

Proposition 2 (Subpath Feasibility) Let Prs = {(r, z1), (z1, z2) . . . , (zl, s)} be a
subpath between r, s ∈ Ii composed of zero-information nodes zi ∈ N \ I only, as
depicted by Fig. 3. Prs is a FIP if and only if

L|Prs | � Ts − Tr � (L + D − 1)|Prs | (27)

where |Prs | is the number of links in path Prs .

Proof If Prs is a FIP, then by construction ∀(i, j) ∈ Prs , L � tj − ti � L+D −1.
Hence

L + · · · + L︸ ︷︷ ︸
|Prs | times

� Ts−tzl
+tzl

+· · ·−tz1+tz1−Tr � (L + D − 1) + · · · + (L + D − 1)︸ ︷︷ ︸
|Prs | times

(28)

A B C DX zero-information node
X infected-information node

Fig. 3 Infection path between a pair of infected information nodes containing only zero-information
nodes
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which is equivalent to inequality (27). Reciprocally, since any link (i, j) ∈ Prs is
potentially feasible, inequality (27) can be broken into |Prs | valid inequalities

L � tz1 − Tr � L + D − 1 (29)

. . .

L � Ts − tzl
� L + D − 1 (30)

Hence every link in Prs is a feasible infection link and Prs is a FIP.

To evaluate the feasibility of an infection occurring between any two infected
information nodes, infection paths can be decomposed into subpaths containing
zero-information nodes only.

Proposition 3 (Path Feasibility) Let Prs be a path with r, s ∈ Ii as depicted by
Fig. 4.Prs is a FIP if and only if every subpath between any two infected information
nodes in Prs is a FIP.

Proof If Prs is a FIP, then by construction any link in Prs is feasible, hence any
subpath Pij ik ⊆ Prs where ij , ik ∈ Ii is a FIP. Reciprocally, let {r, i1, . . . , il, s}
be the set of infected information nodes contained in Prs . If the subpaths Pri1 , . . . ,
Pil s are FIP, then by Proposition 2 we have

L|Pri1 | � Ti1 − Tr � (L + D − 1)|Pri1 | (31)

. . .

L|Pil s | � Ts − Til � (L + D − 1)|Pil s | (32)

Summing these inequalities yields

L(|Pri1 | + · · · + |Pil s |) � Ts − Tr � (L + D − 1)(|Pri1 | + · · · + |Pil s |) (33)

where by construction |Pri1 | + · · · + |Pil s | = |Prs |.

To reduce the size of graph G, we propose to find at most K FIP per OD pair
and regroup these paths into a subgraph. This graph reduction heuristic is inspired by
the efficient algorithms available to solve the length (hop-distance) constrained SP
(Saigal 1968) and the k loopless SP problem (Yen 1971). Namely, our approach
works in two stages; for each OD pair (leaf, root): (1) find the shortest FIP from
the leaf node to the root node if it exists, and (2) find the next K − 1 shortest FIP
for this OD pair if they exist. Note that due the limited information available, it is
possible that no FIP exists for an OD pair: in this case, the leaf node cannot be con-
nected to any other known infected node and will remain disconnected in the resulting
subgraph. Isolated infected information nodes will lead Model 1 to produce partial

A B C D E FX zero-information node
X infected-information node

Fig. 4 Infection path between a pair of infected information nodes
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outbreak trees in which not all known infected nodes are covered. The first stage can
be achieved using a recursive procedure which re-labels nodes until they meet the
feasibility constraint. The second stage requires to search for feasible deviations from
the shortest FIP and can be done using a k-SP like procedure.

From Proposition 3, we know that an infection path between r, s ∈ Ii is feasible if
and only if L|Prs | � Ts −Tr � (L+D−1)|Prs |, hence the length of the candidate
paths is bounded by

Hrs =
⌊

Ts − Tr

L + D − 1

⌋
� |Prs | �

⌈
Ts − Tr

L

⌉
= Hrs (34)

Hrs and Hrs are the minimum and maximum feasible number of hops for path
Prs , respectively. Hence to find the shortest FIP from r to s, we need to find the
SP such that |Prs | � Hrs . Saigal (1968) introduced a dynamic programming algo-
rithm – later revised by Rosseel (1968) – to find the SP of a given length. Using his
notation, for each pair of nodes, let c(i, j) = 1 if (i, j) ∈ A and let c(i, j) = ∞ oth-
erwise. Let Crs(h) be the length of the SP from r to s with h hops and let Prs(h) be
this path. The procedure is initialized as follows:

Crs(1) =
{

1 if (r, s) ∈ A

∞ otherwise
(35)

Prs(1) =
{ {(r, s)} if (r, s) ∈ A

∅ otherwise
(36)

and the recursive formulation (with unit link weights) for every h � 2 can be
summarized as

Crj (h + 1) = min
i∈Γ +(r)

{Cri(h) + c(i, s)} ∀j ∈ N (37)

Prs(h + 1) = Prj (h) ∪ {(j, s)} where j = argmin
j∈Γ +(r)

{Crj (h + 1)} (38)

This algorithm stops when h is equal to the desired number of hops and takes
O(h|N |2) time. In our case, for each OD pair, this recursive formulation needs to
be evaluated at most Hrs times before the existence of a (shortest) FIP from r to s

can be established. To find the next shortest FIP – if it exists – we use a procedure
inspired by k-SP algorithms. Most k-SP algorithms start by finding the SP and then
look among the possible deviations from this path to find next SP. This procedure is
then iteratively applied until k paths have been found. Yen (1971) algorithm uses two
containers to store the candidate SPs found: we denote ASP

rs the container containing
the k SPs and BSP

rs the one containing all the deviations from r to s that have been
identified so far. We denote ASFIP

rs the container containing the K Shortest FIPs from
r to s.

To maximize the chances that every infected information node can be connected
by a FIP to a root node, we consider every possible OD pair. Specifically, let Rs ≡
{r ∈ Ii : Ts � Tr + L}, Rs represents the set of possible root nodes for each
leaf node s ∈ Ii . The set of possible OD pairs is then composed of all the pairs
(s, r) where S ∈ Ii and r ∈ Rs . The pseudo-code of the graph reduction heuristic
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is summarized in Algorithm 1. The K-SFIP algorithm first searches for the shortest
FIP using the recursive procedure defined by Eqs. 37 and 38. If the a FIP has been
found, then this is the shortest FIP (denoted 1-SFIP) and the algorithm restricts the
search for deviations to the paths contained in ASFIP

rs and uses a k-SP like procedure
to enumerate candidate paths for the current OD pair. This algorithm stops when the
K shortest FIP are found or if the length of the current SP is strictly greater than the
maximum feasible number of hops for this OD pair.

Algorithm 1 K-SFIP Algorithm

Data: A graph G = ( N,A), a constant K
Result: A subgraph GK = ( NK,AK )
R argmini Ii ti ;
for s Ii do

for r Rs do
Determine the existence of 1-SFIP using the recursive procedure (37) and (38);
if 1-SFIP exists then

Store 1-SFIP in ASFIP
rs ;

while SFIP
rs K Ts Tr rs do

for all deviations from the last path stored in ASFIP
rs do

Find the SP and store it in BSP
rs ;

end
Move the shortest deviation rs from BSP

rs to ASP
rs ;

if Hrs rs Hrs then store rs in ASFIP
rs ;

end
end

end
end
GK s Ii r Rs (A

SFIP
rs );

Theorem 1 (Correctness and time complexity of the K-SFIP algorithm) The K-
SFIP algorithm finds the K shortest FIP to each leaf from every possible root
node for this leaf node if they exist in O(|Ii |2(H |N |2 + K|N |3)) time, where H =
maxr,s∈Ii

{Hrs}.

Proof For each leaf node s ∈ Ii and for each possible root node r ∈ Rs , the K-SFIP
algorithm starts by determining the existence of a FIP from r to s using the recursive
formulation defined by Eqs. 37 and 38. For each OD pair, if a FIP exists, then this
is the shortest FIP. If there does not exist any FIP from r to s, the algorithm moves
to the next OD pair. Otherwise, to find the next shortest FIP, the algorithm searches
among deviations from the last shortest FIP stored in ASFIP

rs . The shortest deviation
is moved from BSP

rs to ASP
rs and, if this path is a FIP, it is the next shortest FIP and this

path is moved to ASFIP
rs . The search for K shortest FIP terminates when K (shortest)

FIP from r to s have been found or if the length of the current k-SP times the exposed
period is greater than the timestamp difference for the current OD pair, that is, if
Ts − Tr < |Pk

rs |L. In this case, all the remaining paths for the current OD pair are
infeasible. Hence K-SFIP algorithm finds the K shortest FIP to each leaf node from
each possible root node for this leaf node if they exist. Since the time complexity of
the recursive algorithm of Saigal (1968) is O(h|N |2), the existence of the shortest FIP
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for each OD pair can be determined in O(H rs |N |2) time. Observe that all the paths
found after a shortest FIP has been found are either feasible if Ts − Tr � |Pk

rs |L
or infeasible. Hence the while loop is executed at most K − 1 times. Since the time
complexity of Yen (1971) k-SP algorithm is O(k|N |3) and at most K shortest FIP
per possible OD pair are sought, the time complexity of the K-SFIP algorithm is
O(|Ii |2(H |N |2 + K|N |3)).

We can take advantage of the subpath feasibility property (Proposition 3) to speed-
up the search procedure by strategically iterating over the set of possible OD pairs and
pruning the search tree. Namely, if we sort the infected information nodes by their
timestamps, we can iterate over the leaf nodes (first for loop) by increasing order of
timestamps and iterate over the possible root nodes (second for loop) by decreasing
order of timestamps. Then, for each leaf node s ∈ Ii and for each root node r ∈ Rs ,
if at least one FIP has been found from r to s, we can then prune the set of possible
root nodes Rs by removing all the nodes to which a FIP from the current root node r

has been found. Namely, for each OD pair, we can re-define the set of possible roots
as follows:

Rs ← Rs \ {r ′ ∈ Rs : ∃Hr ′r � |Pr ′r | � Hr ′r}
∀s ∈ Ii, ∀r ∈ Rs : ∃Hrs � |Prs | � Hrs (39)

This pruning procedure guarantees that for every root node r ′ removed from Rs ,
there exist at least one FIP, and at most K , from r ′ to s which pass through the current
root node r . This helps in improving the computational performance of the K-SFIP
algorithm. Algorithm 1 provide a method to significantly reduce the search space.
This heuristic however, does not ensure that the obtained subgraph contains a feasible
infection tree. This is illustrated in Example 2.

Example 2 Consider the network depicted by Fig. 5. In this outbreak scenario, only
three of the individuals are information nodes (red nodes). If Algorithm 1 is executed
with K = 1, the search for the shortest FIP from root A to destination node D returns
path {A, E, D} and the search for the shortest FIP to destination node F returns path
{A, E, F }. Solving Model 1 on the subgraph composed by both paths produces an
infeasible solution because the constraints on node E are conflicting. Indeed, path
{A, E, D} imposes that tE ∈ [1, 2] and path {A, E, F } imposes that tE ∈ [4, 8].

X zero-information node
X infected-information node

t timestamp
D=5L=1

1-SFIP

(K=1)
A

B C D

E

FGH

t=0

t=3

t=9

A

D

E

F

t=3

t=9

t=0

Fig. 5 An outbreak scenario where the execution of the K-SFIP algorithm with K = 1 does not produce
a subgraph containing a feasible infection tree
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To increase the chances that the subgraph produced by the K-SFIP algorithm con-
tains a feasible infection tree, it is necessary to increase the value of K . Searching
for a large number of K shortest FIP leads to the generation of larger subgraphs and
increases the probability of obtaining a feasible infection tree but may also deteriorate
the computational performance of the second step, i.e. finding the maximum likeli-
hood tree in the resulting subgraph. To find the MLIT, we propose to solve Model 1
for every subgraph GK generated. We next present an exact reformulation of Model
1 as a MILP that can be used to find the MLIT on every subgraph GK .

4.2 Exact MILP Reformulation

In order to provide an efficient formulation to solve the MLIT, we introduce auxiliary
decision variables and constraints to linearize objective function (8) and the feasibil-
ity constraints (9) and (10) in Model 1 with respect to decisions variables xij and ti .
The feasibility constraints can be linearized using T (resp. −T ) as the upper (resp.
lower) bound on Δtij :

It is a common practice among optimization techniques to consider the logarithm
of likelihood functions instead of its proper expression. Applying this technique to
Eq. 8 we obtain the following objective function

max
∑

(i,j)∈A

xij log(pij ) + log(1 − pij )
(
xij (�tij − L)+ + (1 − xij ) min{D, (�tij − L)+}) (42)

which can be written as
max

∑
(i,j)∈A

xij log(pij ) + log(1 − pij )(B1 + B2) (43)

where

B1 = xij (Δtij − L)+ (44)

B2 = (1 − xij ) min
{
D, (�tij − L + 1)+

}
(45)

To linearize the objective function (42) we have to linearize B1 and B2. B1 can be
linearized by introducing a continuous decision variable ρ

x,Δt
ij defined as

∀(i, j) ∈ A, ρ
x,Δt
ij ≡ xijΔtij (46)

and the following set of constraints

C(xij , Δtij ) ensure that variable ρ
x,Δt
ij behaves as the product xij · Δtij and is

known as the Fortet linearization. If xij = 1, then the first two constraints ensure that
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ρ
x,Δt
ij = Δtij . If xij = 0, then the first two constraints ensure that ρ

x,Δt
ij is lower than

a positive value and greater than a negative value and the last two constraints ensure
that ρ

x,Δt
ij = 0. This exact linearization is possible mainly because Δtij is a bounded

variable; note that this reformulation is also possible if Δtij is a continuous variable
(Liberti et al. 2009). In the remainder of this paper, the notation C(bin, int) is used
to design the set of constraints used to reformulate the decision variable product
bin · int , where bin is a binary variable and int is a bounded integer variable.

B1 can hence be expressed linearly as

B1 = ρ
x,Δt
ij − xijL (51)

To linearize B2 first observe that since D � 0, we have:

min{D, (Δtij − L + 1)+} = (min{D, (Δtij − L + 1)})+ (52)

In Eq. 43, B1 and B2 are weighted by logarithms of probabilities, therefore the
objective function of this problem can be represented so as to maximize a sum of
negative-weighted terms. Hence we can linearize the max and the min by introducing
two variables lij � 0 and mij � 0 defined as:

∀(i, j) ∈ A, lij ≡ min{D, (�tij − L + 1)} (53)

∀(i, j) ∈ A, mij ≡ (lij )
+ (54)

and using the following constraints for each link (i, j) ∈ A:

mij � 0 (55)

mij � lij (56)

lij � Δtij − L + 1 (57)

lij � D (58)

lij � D − (D + L + T − 1)(1 − zij ) (59)

lij � Δtij − L + 1 − 2T zij (60)

where zij is a binary decision variable that takes value 1 if D � Δtij − L + 1 and 0
otherwise. Hence B2 can be expressed linearly as

B2 = mij − ρ
x,m
ij (61)

where ρ
x,m
ij is a continuous decision variable defined as

∀(i, j) ∈ A, ρ
x,m
ij ≡ xijmij (62)

through constraint set C(xij , mij ). Note that due to the direction of the objective
function, if xij = 0 then B2 = mij = lij . Since lij is an exact linearization of
min{D, (Δtij − L + 1)} and both D and Δtij − L + 1 are integers, then lij must also
be integer. If xij = 1, then B2 = 0 and variables lij and mij have no impact on the
value of the objective function. The resulting model is presented below.
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Model 2 (MILP for the MLIT)

max
∑

(i,j)∈A

xij log(pij ) + log(1 − pij )
(
ρ

x,Δt
ij − xijL + mij − ρ

x,m
ij

)
(63)

subject to

ρ
x,Δt
ij ≡ C(xij , Δtij )

ρ
x,m
ij ≡ C(xij , mij )

Δtij = tj − ti
Δtij � xij (L + D − 1) + (1 − xij )T

Δtij � xijL − (1 − xij )T

mij � 0
mij � lij
lij � Δtij − L + 1
lij � D

lij � D − (D + L + T − 1)(1 − zij )

lij � Δtij − L + 1 − 2T zij

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∀(i, j) ∈ A (64)

Tree constraints (12) − (15)

Timestamps constraints (16) − (19)

Domain constraints (20) − (22) and auxiliary variables

Model 2 is an exact reformulation of Model 1 that can be solved using commercial
MILP optimization software. We use Model 2 in our solution method to find the
MLIT on the subgraphs induced by Algorithm 1. In the next section, we present the
validation framework used to measure the performance of our approach.

5 Validation Framework

In this section, we present the methodology used to evaluate the performance of
the proposed solution method. To validate our approach we (1) simulate outbreak
scenarios on a randomly generated network using the SEIR compartmental model
(presented in Section 3.2), (2) extract information on a subset of the nodes corre-
sponding to a specified level of information availability which is to be used as input
for the model, (3) implement the solution method, and (4) evaluate the performance
of the solution method based on its ability to accurately identify the actual infection
pattern. Only outbreaks evolving from a single source, i.e. a single infected individ-
ual, are considered in the analysis presented in this paper. Evaluation of the proposed
methodology for outbreaks which evolve from multiple sources will be explored in
future work.

The model performance is measured by comparing the set of nodes and links
involved in the spread of the disease in the SEIR simulation-based scenario (hereby
referred to as actual outbreak) with those identified by the MLIT obtained by the
solution method. Of specific interest in this work is the performance of the solution
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method for different levels of information availability i.e. size of the information sub-
set. Recall that the status and the timestamps of zero-information nodes are unknown
from the perspective of the solution method. For the evaluation of each sample we
define a set of metrics to quantify the performance of the solution method. The met-
rics are determined by comparing the actual infection tree obtained at the chosen
observation date, with the MLIT obtained by the solution method. We consider two
types of metrics:

– Link metrics; which compare the observed network links that have spread the
disease (extracted from the SEIR simulation) with the links identified by the
MLIT.

– Node metrics; which compare the observed compartment of the nodes (extracted
from the SEIR simulation) with the compartmental status of the nodes as
specified by the MLIT.

For a given network G, disease parameters D and L, set of link transmission prob-
abilities [pij ], and a specified level of information; the following steps are used to
compute the performance metrics:

1. Randomly introduce an infected individual into the network (source node)
2. Simulate an outbreak for a specified number of time steps (up to the observation

date) using the SEIR model
3. Extract the observed infection tree T obs from the simulation to use for evaluat-

ing the performance of the solution method, namely:

(a.) the full set of links in T obs

(b.) the full set of infected nodes in T obs and their timestamps

4. Randomly select a subset I of nodes according to the level of information
5. Extract the following (required) information from the simulation to use as input

for the solution method:

(a) the set of information nodes I

(b) the timestamps of all information nodes Ti, ∀ ∈ I

6. For each value of K tested:

(a) Implement Algorithm K-SFIP on G and store the obtained paths in GK

(b) Solve Model 2 on the resulting subgraph GK

7. Solve Model 2 on G

8. Repeat Steps 1 to 7 n times and compute statistics on the performance of the
solution method

The procedure outlined above returns the expected performance of our solution
method, which is how accurately the MLIT represents the actual spreading scenario,
for a specified network structure, level of information and set of disease parameters.
To create the network structures we use a random graph generator which relies on a
preferential attachment rule, resulting in networks with power law node degree dis-
tribution. Various studies have found that power law networks are representative of
many real world networks, including social contact networks (Barabási and Albert
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1999; Gonzales et al. 2008). Power law networks have a hub and spoke type structure
with few highly connected nodes, (known as super spreaders in the context of con-
tagion problems), while most nodes have a very low degree and are representative
of many real world network structures (Clauset et al. 2009). The level of hetero-
geneity depends on the power law exponent; we present results from two power law
networks:

– exponent of 3: 1,000 nodes and 2,184 directed links
– exponent of 2.5: 1,000 nodes and 2,752 directed links

The networks are generated using Networkx, a Python module for complex net-
works representation (Hagberg et al. 2008). A sequence of node degrees are sampled
from a power-law distribution with a specified exponent (i.e. 3 or 2.5) and a graph is
randomly generated by assigning edges to match the degree sequence (self edges and
parallel edges are removed). This procedure is executed until a connected component
with the desired number of nodes (i.e. 1,000) is found. The node degree distributions
of the two networks used are given in Fig. 6. In this case study, we use the following
parameters values:

• Exposed period L = 1
• Infectious period D = 3
• Observation date: 7 time steps
• 5 levels of information: 20 %, 40 %, 60 %, 80 % and 100 %
• 2 range of disease transmission probabilities:

– low range: ∀(i, j) ∈ A, pij ∈ [0.1, 0.5]
– high range: ∀(i, j) ∈ A, pij ∈ [0.5, 0.9]

Both exposed and infectious periods are expressed in units of time and the out-
break data is extracted after 7 simulation steps (recall that the contagion process
herein is assumed to evolve with a discrete time step). Our choice of the observation
period was made in accordance to the outbreak size (proportion of the population
infected): we have chosen our observation date to ensure that the outbreaks observed

Fig. 6 Node Degree Distribution of the power law networks
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spanned different outbreak sizes, for the range of disease transmission probabilities
and network structures tested.

6 Results

We first carry out a detailed evaluation of the proposed solution method before pre-
senting a sensitivity analysis with regards to the network topology and the spread of
the outbreak, and discussing its computational performance.

6.1 Solution Method Evaluation

For this evaluation, we focus on the power law network with an exponent of 3 and
examine the performance of the solution method with regards to the range of trans-
mission probabilities and the level of information. For each link of the network,
the disease transmission probabilities are randomly and uniformly generated in the
selected range (low or high). To reproduce the limited availability of information, we
randomly select a subset of the nodes to be information nodes. Due to the heteroge-
neous structure of power law networks, contagion processes can result in a wide range
of scenarios, even for the same set of disease parameters and source of infection.
Given the stochastic nature of the contagion process and the fact that the model per-
formance can vary drastically based on the specific contagion process which evolves,
the performance of the model is evaluated by averaging over multiple samples (i.e
simulated contagion episodes). Namely, for each combination of level of information
and range of disease transmission probabilities, we evaluate n = 500 samples and for
each sample the model performance is based on how accurately it predicts the actual
paths of infection (which are extracted from simulation outputs).

The solution method is implemented for three values of K: K = 1, 5 and 9. Recall
that the graph G1 obtained for K = 1 is a subgraph of the subgraph obtained for
higher values of K , that is G1 ⊆ G5 ⊆ . . . ⊆ G. To measure the performance of the
K-SFIP algorithm, we also implement Model 2 on graph G (data series K = ∞).
The simulation of the SEIR compartmental model and the K-SFIP algorithm are
implemented in C++ on a 64-bit machine with 188Gb of RAM and the optimization
problems (MILP instances) are solved using the CPLEX v12.5 commercial package
(C++ API) with a time limit of five minutes and an integrality gap of 1e − 5. The
results are presented using boxplots in which each box represents the span of the
values in the InterQuartile Range (IQR) and the whiskers extend to the minimal and
the maximal values observed. Furthermore, the width of the box is proportional to the
number of feasible solutions found by Model 2 for this combination of parameters.

Figure 7 shows the proportion of the links correctly identified by the solution
method for each combination of level of information and value K tested as well as
the performance of the MILP when no graph reduction algorithm is used; for a low
disease transmission probabilities range (7a) and for a high range (7b). We report
that the performance of the solution method increases quasi-linearly with the infor-
mation level. In the case of a low range of probabilities, the performance of the
solution method is competitive with the one observed when solving on the entire
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Fig. 7 Zero-information node status identification

graph G, i.e. K = ∞ and the variance of the number of links correctly identified
decreases when more information is available. While solving Model 2 on G directly
(K = ∞) yields more feasible solutions than using the K-SFIP algorithm, it may
also results in extremely poor performance, in particular for low levels of information
(20 % and 40 %). With a high range of probabilities, solving on G produces a bet-
ter link identification than with GK for all the values of K tested but the difference
in performance decreases with the information level. Using a high range of proba-
bilities, the outcome of the model on these instances is less volatile than with a low
range. We also observe that, for an information level of 20 %, contrary to the tests
with a low range of probabilities, solving on G directly yields less feasible solutions
than using the graph reduction algorithm. Since for each sample in which a feasible
solution has been found using the heuristic, this solution could have been found by
solving on the whole graph, this outcome indicates that CPLEX has not been able
to find this feasible solution within the allocated five minutes of runtime. For both
ranges of probabilities, the performance of the solution method improves marginally
with K .

Figure 8 demonstrates the performance of the proposed solution method by show-
ing the average proportion of zero-information nodes which status, i.e. infected or
not, has been correctly identified for a low range of probabilities (Fig. 8a) and for
a high range of probabilities (Fig. 8b). For both transmission probability ranges, the
solution method is relatively robust with regards to the level of information avail-
able, although its performance is slightly inferior for low levels of information (20 %
and 40 %). For the low range of probabilities, on average, more than 90 % of the
zero-information nodes status are correctly identified and the status of at least 80 %
of these nodes is correctly identified, for each value of K tested. For the high range
of probabilities, solving on the entire graph G outperforms the heuristic algorithm
which is more volatile and only marginally improves with the value of K . Figure 9
demonstrates the ability of the solution method to correctly determine the timestamp
of zero-information nodes for a low range of probabilities (Fig. 9a) and for a high
range of probabilities (Fig. 9b); the trend observed is similar to the one depicted by
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Fig. 8 Zero-information node status identification

the node status identification metric with a marginal loss of performance. On average,
the solution method is able to correctly determine more than 90 % of the timestamps
for the low range whereas this figure is decreased to 70 % for the high range and is
more volatile.

Figure 10 demonstrates the performance of the K-SFIP algorithm by showing the
average proportion of links contained in GK for each combination of level of infor-
mation and value K for the low range (Fig. 10a) and for the high range (Fig. 10b);
and the average proportion of links in the actual outbreak tree which are contained
in GK for the low range (Fig. 10c) and for the high range (Fig. 10d). For the low

Fig. 9 Zero-information node timestamp identification
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Fig. 10 Performance of the K-SFIP algorithm for different values of K and level of information

range case study, Graph G is always reduced by more than 85 %, and focusing on
the IQR values, only 5 % of the links of G are contained in GK , for each value of
K tested and information level. The accuracy of the resulting subgraph GK , i.e. the
number of links in T obs contained in GK increases linearly with the level of infor-
mation. We observe that, on average, the accuracy G5 outperforms the one of G1
but G9 only marginally improves this performance measure with regards to G5. The
performance of the K-SFIP algorithm for a high range of transmission probabili-
ties follows a similar trend but is slightly more sensitive to the level of information.
The median (resp. maximal) graph reduction for K = 5 is 5 % (resp. 17 %) with
a level of information of 20 % and 15 % (resp. 40 %) for the full information
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scenario. The accuracy of the subgraph GK is less volatile for a high range than for a
low range of transmission probabilities but the average values for each combination
of level of information and value of K is of the same order of magnitude for both
ranges.

This analysis shows that the proposed solution method is efficient in the sense
that it is able to significantly reduce the initial graph G and at the same time
maintain a high level of accuracy. While solving Model 2 on the whole graph G

may produce a better outcome than solving this model on a subgraph GK , the
heuristic algorithm is shown to provide a competitive performance for most of the
scenarios tested. We next conduct a sensitivity analysis with regards to the link
density and the outbreak size, i.e. the number of individuals infected in the actual
outbreak.

6.2 Sensitivity Analysis

For this case study, we examine the performance of the solution method on the
two aforementioned power law networks, i.e. with exponents of 3 and 2.5. The
results are shown for K = 5 since no significant improvement has been observed
for K = 9 and are plotted according to the outbreak size of each sample evalu-
ated using scatter plots (each dot corresponds to a sample). Figure 11 shows the
performance of the solution method with regards to the link identification metric
and Fig. 12 shows the node status identification metric. For both figures, each col-
umn represents the results obtained for a combination of link-density (network) and
range of disease transmission probabilities and each row shows the performance for
a specified level of information. The outbreak size, i.e. proportion of the population
infected, can change considerably but, as expected, we observe smaller outbreaks
for a low range and the outbreak size increases with the number of links in the
network.

The link identification metric is relatively robust with regards to the outbreak size
and the link-density in contrast to the zero-information nodes identification metric
which performance decreases with the outbreak size for partial information sce-
narios. This is a consequence of our model which is designed to search the graph
based on the available information. When the size of the outbreak increases, the
likelihood that the actual timestamp of a zero-information node is greater than the
timestamp of the latest known infected individual (T ) increases as well. Mean-
while, the model is highly likely to not include such zero-information nodes in
the optimal tree. Hence, for outbreaks which spread to a large portion of the
population, we expect the model to underestimate the spread of the infection. How-
ever, in the context of the infectious diseases, an outbreak which spreads to most
or all members of the population is highly unlikely. More importantly, the same
assumption that produces this weakness in the model performance under high trans-
mission probabilities proves beneficial under lower transmission probabilities, which
are more realistic in practice. The increase in link-density also affects the perfor-
mance of the solution method with regards to the node identification metric, but the
model remains able to correctly identify the links responsible for the spread of the
disease.
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Fig. 11 Link identification sensitivity against network density, disease transmission probabilities range
and outbreak size

6.3 Computational Performance

Table 2 describes the computational performance of the proposed solution method.
The mean runtime of the K-SFIP algorithm is given for each network structure
(power law exponent); range of disease transmission probabilities and information
level. For each combination of input parameters, the number of feasible and optimal
solutions obtained after solving Model 2 (MILP) using the CPLEX v12.5 solver with
a five-minute time limit and the mean running time (averaged over the set of feasible
instances) for each subgraph GK as well as for graph G is detailed. The K-SFIP algo-
rithm is faster for a low range of transmission probabilities than for a high range. This
behavior is expected since using a high range results in more individuals infected and
therefore more OD pairs (root, leaf) must be searched for FIPs. There is a decreasing
marginal return on performance as K increases, with limited improvement occurring
after K = 5. However, for the denser network structure, the performance increase
with K was more noticeable. Using the K-SFIP algorithm and solving on the sub-
graph GK is faster than solving directly on the whole graph G under low information
levels but this trend is gradually reversed when the level of information increases.
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Furthermore, the K-SFIP algorithm is often able to identify optimal solutions
when the MILP fails (within the allocated runtime), especially for the denser network
structures. Comparing the runtime between the two different power law exponents, 3
and 2.5, which resulted in a 25 % increase in the number of links, it is clear that as the
network density increases there is a significant increase in the required runtime for
both the K-SFIP algorithm and the MILP, especially for higher probabilities. In order
to reduce the runtime of the K-SFIP algorithm on large outbreaks, we have imple-
mented a variant of our algorithm where the set of possible roots for each leaf node is
reduced to the set of earliest infection information nodes, i.e. Rs = Ie, ∀s ∈ Ii . Using
this heuristic to reduce the number of OD pairs to search considerably reduces, on
average, the runtime of the graph reduction algorithm. However, this approach may
occasionaly result in poor metric performance, in particular if the nodes in the set Ie

are not responsible for the spread of the infection to most other infected information
nodes. The results presented indicate that the proposed heuristic has the potential to
significantly outperform the pure MILP approach, and that a fine tuning of K can
result in balanced outcomes between the solution accuracy and the computational
performance.
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7 Conclusion

The problem addressed in this research is to infer a contagion tree in a network
utilizing partially available node-level information. The underlying problem is
similar to a constrained Steiner Tree problem in the sense that it requires an assign-
ment of integer weights on the Steiner nodes. We introduced a novel IP model for
identifying the MLIT, which improves on previous works by relaxing the assumption
that the source(s) of the infection is known. We proposed a two-step solution method
which relied on reducing the initial graph by finding FIP and solving an exact MILP
reformulation of the initial IP on the obtained subgraph with a predetermined max-
imum number of FIP per OD pair. A polynomial time algorithm was developed for
the graph reduction heuristic which was inspired by efficient procedures to solve the
length constrained SP and the k-SP problems. The K-SFIP algorithm works from
known infected nodes and attempts to find FIP in the graph by connecting root and
leaf nodes.

The specific application of focus was disease outbreaks in social contact networks.
The computed metrics reflect the ability of the solution method to appropriately iden-
tify infected nodes and infection spreading links, while also penalizing the model for
over-infecting the network. As expected, the performance of the solution method was
sensitive to the level of information in the network: the proportion of links correctly
identified increased with information availability. With regards to the identification
of the status and the timestamps of zero-information nodes, the solution method was
shown to be robust to information availability. From a heuristic perspective, the K-
SFIP algorithm was shown to be efficient as it was able to generate small subgraphs
containing a significant share of the original graph which account for the majority
of the actual infection tree. The implementation conducted in this paper shows that
this epidemiological pattern inference problem can be solved efficiently on the power
law networks considered in this study, whose node degree distribution is represen-
tative of realistic social contact networks. Further analysis is required to examine
the performance of the proposed solution method on larger networks and on alter-
native network topologies. In particular, applying this model to real world contagion
episodes may require the development of additional heuristics to cope with regional
metropolitan areas.

While our approach relies on the assumption of available contact information and
infection data which may seem limiting, it may not be an unrealistic assumption
for the future. Information technology has evolved exponentially in the past decade
alone, and is continually advancing in the ability to track individuals over time and
space. While the specific means in which these contact networks are generated is
beyond the scope of this paper, generating the required model input through the
use of online social network data, cell phone data, and activity based travel mod-
els has been proposed and extensively studied by experts in these chosen fields.
Such research efforts may potentially allow accurate mappings between known indi-
viduals, and there is currently a lack of modeling research which exploits the use
of these data sets for modeling disease transmission in real time as a means to
effectively manage outbreaks. Additionally, real-time infection data is becoming
increasingly available from various online global health databases and real-time



Finding Outbreak Trees in Networks with Limited Information 719

reporting through the World Health Organization (WHO), Centers for Disease Con-
trol and Prevention (CDC), Centers for Infectious Disease Research and Policies
(CIDRAP: www.cidrap.umn.edu) and the International Society for Infectious Dis-
eases (ProMED: www.promedmail.org). These organizations and their respective
data sets are becoming increasingly relied upon for tracking outbreaks, and also
provide a means for public health and medical experts to gather the necessary infor-
mation to estimate properties of emerging diseases which are required inputs for our
model, such as transmission probability. This serves as the main motivation behind
the proposed research. Furthermore, even today, there exist isolated communities and
closed settings (schools, hospitals, etc) where the necessary inputs for our model
(disease parameters, contacts and infection reports) can be made available, and the
proposed model could be directly applied.

In conclusion, the proposed methodology provides a novel procedure for evalu-
ating a group of individuals that has been exposed to infection. The performance of
the solution method was shown to accurately identify a significant proportion of the
nodes and links responsible for the spread of a disease in a network. Such information
is valuable in aiding public health policy in the design of surveillance and outbreak
intervention strategies. These types of models also serve to incentivize specific data
collection efforts that would be the most valuable for modelling purposes, specifi-
cally validating models such as that proposed. Planned extensions of this research
include further sensitivity analysis to network structure and epidemiological param-
eters, as well as exploring performance under outbreaks which evolve from multiple
sources.
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Erath A, Löchl M, Axhausen KW (2009) Graph-theoretical analysis of the swiss road and railway networks

over time. Netw Spat Econ 9(3):379–400
Eubank S, Guclu H, Kumar V, Marathe M, Srinivasan A, Toroczkai Z, Wang N (2004) Modeling disease

outbreaks in realistic urban social networks. Nature 429:180–184

http://dx.doi.org/10.1137/070710111


720 D. Rey et al.

Fajardo D, Gardner L (2013) Inferring contagion patterns in social contact networks with limited infection
data. networks and spatial economics

Ferguson N, Cummings D, Fraser C, Cajka J, Cooley P, Burke D (2006) Strategies for mitigating an
influenza pandemic. Nature 442:448–452

Gardner LM, Fajardo D, Waller ST (2012) Inferring infection-spreading links in an air traffic network.
Transp Res Rec: J Transp Res Board 2300(1):13–21. doi:10.3141/2300-02

Gardner L M, Fajardo D, Travis W S (2014) Inferring contagion patterns in social contact networks using
a maximum likelihood approach. ASCE, natural hazards review

Garey M, Johnson D (1977) The rectilinear Steiner tree problem is NP -complete. SIAM J Appl Math
32(4):826–834. doi:10.1137/0132071

Gastner MT, Newman ME (2006) The spatial structure of networks. Eur Phys J B-Condens Matter
Complex Syst 49(2):247–252

Gonzales M, Hidalgo C, Barabási AL (2008) Understanding individual human mobility patterns. Nature
453:479–482

Gouveia L, Magnanti TL (2003) Network flow models for designing diameter-constrained minimum-
spanning and steiner trees. Networks 41(3):159–173. doi:10.1002/net.10069

Gouveia L, Simonetti L, Uchoa E (2011) Modeling hop-constrained and diameter-constrained minimum
spanning tree problems as steiner tree problems over layered graphs. Math Program 128(1–2):123–
148. doi:10.1007/s10107-009-0297-2

Graham RL, Hell P (1985) On the history of the minimum spanning tree problem. Ann Hist Comput
7(1):43–57. doi:10.1109/MAHC.1985.10011

Hagberg AA, Schult DA, Swart PJ (2008) Exploring network structure, dynamics, and function using
networkX. In: Proceedings of the 7th python in science conference (SciPy2008), Pasadena, pp 11–15

Hasan S, Ukkusuri S (2011) A contagion model for understanding the propagation of hurricane warning
information. Transp Res B 45:1590–1605

Hoogendoorn SP, Bovy PH (2005) Pedestrian travel behavior modeling. Netw Spat Econ 5(2):193–216
Hwang FK, Richards DS (1992) Steiner tree problems. Networks 22(1):55–89.

doi:10.1002/net.3230220105
Illenberger J, Nagel K, Flötteröd G (2013) The role of spatial interaction in social networks. Netw Spat

Econ 13(3):255–282
Jombart T, Eggo RM, Dodd P, Balloux F (2009) Spatiotemporal dynamics in the early stages of the 2009

a/h1n1 influenza pandemic. PLoS currents influenza
Kinney R, Crucitti P, Albert R, Latora V (2005) Modeling cascading failures in the north american power

grid. Eur Phys J B 46(1):101–107
Lam WH, Huang HJ (2003) Combined activity/travel choice models: time-dependent and dynamic

versions. Netw Spat Econ 3(3):323–347
Liberti L, Cafieri S, Tarissan F (2009) Reformulations in mathematical programming : a computational

approach. In: Foundations of computational intelligence volume 3 - global optimization. Springer
Luo W, Tay WP, Leng M (2013) Identifying infection sources and regions in large networks. IEEE Trans

Sigs Process 61(11):2850–2865
Murray J (2002) Mathematical biology, 3rd edn. Springer
Newman M, Forrest S, Balthrop J (2002) Email networks and the spread of computer viruses. Phys Rev E

66(3)
P L, M S, A R (2009) Reconstructing the initial global spread of a human influenza pandemic: a bayesian

spatial-temporal model for the global spread of h1n1pdm. PLoS currents influenza
Ramadurai G, Ukkusuri S (2010) Dynamic user equilibrium model for combined activity-travel choices

using activity-travel supernetwork representation. Netw Spat Econ 10(2):273–292
Roche B, Drake J, Rohani P (2011) An agent-based model to study the epidemiological and evolutionary

dynamics of influenza viruses. BMC Bioinforma 12(1):87
Roorda MJ, Carrasco JA, Miller EJ (2009) An integrated model of vehicle transactions, activity scheduling

and mode choice. Transp Res B Methodol 43(2):217–229
Rosenwein MB, Wong RT (1995) A constrained steiner tree problem. European journal of operational

research
Rosseel M (1968) Comments on a paper by romesh saigal: a constrained shortest route problem. Oper Res

16(6):1232–1234
Sachtjen M, Carreras B, Lynch V (2000) Disturbances in a power transmission system. Phys Rev E

61(5):4877–4882

http://dx.doi.org/10.3141/2300-02
http://dx.doi.org/10.1137/0132071
http://dx.doi.org/10.1002/net.10069
http://dx.doi.org/10.1007/s10107-009-0297-2
http://dx.doi.org/10.1109/MAHC.1985.10011
http://dx.doi.org/10.1002/net.3230220105


Finding Outbreak Trees in Networks with Limited Information 721

Saigal R (1968) A constrained shortest route problem. Oper Res 16(1):205–209
Santos M, Drummond LM, Uchoa E (2010) A distributed dual ascent algorithm for the hop-constrained

steiner tree problem. Oper Res Lett 38(1):57–62. doi:10.1016/j.orl.2009.09.008
Schintler LA, Kulkarni R, Gorman S, Stough R (2007) Using raster-based gis and graph theory to analyze

complex networks. Netw Spat Econ 7(4):301–313
Sornette D (2003) Why stock markets crash: critical events in complex financial systems. Princeton

University Press
V C AB, M B AV (2006) The modelling of global epidemics: Stochastic dynamics and predictability. Bull

Math Biol 68:1893–1921
Voss S (1999) The steiner tree problem with hop constraints. Annals of operations research
Wallace R, HoDac H, Lathrop R, Fitch W (2007) A statistical phylogeography of influenza a h5n1. Proc

Natl Acad Sci USA 104(11):4473–4478
Wesolowski A, Buckee C, Bengtsson L, Wetter E, Lu X, Tatem A (2014) Commentary: containing the

ebola outbreak–the potential and challenge of mobile network data. PLOS currents outbreaks
Yen JY (1971) Finding the k shortest loopless paths in a network. Management science

http://dx.doi.org/10.1016/j.orl.2009.09.008

	Finding Outbreak Trees in Networks with Limited Information
	Abstract
	Introduction
	State of the Art
	Contagion Processes Modelling
	Related Network Optimization Problems

	Problem Formulation
	Mathematical Definition
	Epidemiological Model
	Problem Notation and Information Availability
	Maximum Likelihood Model

	Solution Method
	Graph Reduction Algorithm
	Exact MILP Reformulation

	Validation Framework
	Results
	Solution Method Evaluation
	Sensitivity Analysis
	Computational Performance

	Conclusion
	References


