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Abstract The interest in bicycling and its determining factors is growing within the public
health, transportation and geography communities. Ownership is one factor affecting bicycle
usage, but work is still ongoing to not only quantify its effects but also to understand patterns
in its growth and influence. In recentwork,wemined and discovered patterns in global bicycle
ownership that showed the existence of four characteristic country groups and their trends.
Building on these results, we show in this paper that the ownership dataset can be modeled as
a network. First, we observe mixing tendencies that indicate neighboring countries are more
likely to be in the same ownership group andwemap the likelihoods for cross-groupmixings.
Further, we define the strength of connections between countries by their proximity in own-
ership levels. We then determine the weighted degree assortative coefficient for the network
and for each group relative to the network. We find that while the weighted degree assortativ-
ity of the ownership network is statistically insignificant, the highest and lowest ownership
groups exhibit disassortative behavior with respect to the entire network. The second and
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third ranked groups, however, are strongly assortative. Our model serves as a step toward
further work in studying the relationship between proximity and bicycle ownership among
nations and unearthing possible patterns of influence. Considering further developments, this
work can inform policy-relevant recommendations toward regional planning. This effort also
contributes to expanding research in assortativity analyses, especially in weighted networks.

Keywords Bicycle ownership · Spatial associations · Networks · Assortativity

1 Introduction

As efforts are being renewed toward sustainable urban communities and safe and clean streets,
a resurgence in bicycle ownership and usage would be a welcome development (Jacobsen
2013; Roseland 2012; Midgley 2011). In keeping with this pattern, policymakers are pro-
moting schemes to further improve cycling conditions in various locales (Dales and Jones
2014; Vandenbulcke-Plasschaert 2011). Some of these include increasing the level of cycling
infrastructure, investing in bicycle-sharing programs and raising awareness toward bicycle
safety (Vandenbulcke-Plasschaert 2011). An important factor affecting the usage of bicy-
cles is availability. For many, especially in places where sharing programs are inaccessible,
household ownership becomes a determining factor of bicycle access and activity. In the first
undertakingof its kindon aglobal scale,weminedhousehold ownership data, discoveringpat-
terns in global bicycle ownership trends from 1989 to 2012 (Oke et al. 2015).While this work
has laid an important foundation, more questions have arisen, some of which revolve around
the nature of the relationships between these patterns and other possible contributing factors.

In this paper, we investigate spatial associations with regard to bicycle ownership among
countries building on our earlier work. This is the first time this has been done in the academic
literature, to the best of our knowledge. We demonstrate here that a network model of the
countries in our database can provide further insight into geographic factors affecting house-
hold bicycle ownership patterns. Using graph theoretic properties, we weight the proximity
of neighboring countries by a measure of separation in ownership (as given by prior cluster
analyses, Oke et al. (2015)) and observe assortative behavior. Our results indicate that neigh-
boring countries tend to share similar ownership levels. However, high ownership countries
appear to have a positive influence on their neighbors, as well. Our effort also contributes to
the growing body of work in assortativity, which would benefit from further investigation in
the area of weighted networks (Noldus and Van Mieghem 2015).

Spatial analysis has proven to be an effective means of understanding and analyzing
networks across a wide variety of applications, namely: infrastructure (Vandenbulcke-
Plasschaert 2011; Páez and Scott 2005), reliability modeling (Li et al. 2014), ecology (Szmyt
2014), epidemiology (Dijkstra et al. 2013;Caprarelli andFletcher 2014), social sciences (Dar-
mofal 2015), amongmany others. To these ends, a variety of network models and approaches
have been developed and the resulting associations have been useful for predictions, sim-
ulations and other aspects of decision making. Zhukov and Stewart (2013) tested various
proximity criteria to infer an appropriate network structure to simulate the diffusion of polit-
ical ideology. In their work, they provide valuable insights into the choice of an appropriate
network model. Vieira et al. (2010) employ a modified “small world” network model (Mil-
gram 1967) to analyze the spread of HIV over time. Ma et al. (2014) use a linear model to
perform spatio-temporal investigations in scientific cooperation between cities in China. As
will be discussed, methods for analyzing these patterns in networks were notably established
by Newman (2002, 2003, 2004), among others.
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The rest of the paper is organized as follows: In the next section (Sect. 2) we detail
our previous efforts, with attention given to the data mining tools we used in tracking global
household bicycle ownership, as they highlight the challenges of dealingwith a sparse dataset.
Section 3 motivates the network theory via a brief background and then proceeds to describe
our approach. We then present our results (Sect. 4) and discuss their implications (Sect. 5).
The paper is concluded by a summary and outline of future work (Sect. 6).

2 Review of prior cluster analysis of household bicycle ownership

We collected household bicycle ownership data from various national, regional and interna-
tional surveys, spanning 1989 to 2012 and 150 countries. The unifying question of interest in
all of the surveys was whether the household owned at least one bicycle. The ownership data
only amounted to 540 unique country-years. We also obtained and estimated national house-
hold populations in the years of interest. The dataset represented 1.25 billion households, and
a 42% household weighted average ownership indicates average indicates that there at least
half a billion bicycles in homes around the world.1 Details on the data collection process can
be found in Oke et al. (2015).

Hierarchical agglomerative clustering (HAC) was the initial step in pattern discovery
beyond geographical proximity. HAC is unsupervised (Jain et al. 1999; Tsui et al. 2006) but
it requires a means for calculating the separation between all the nodes at initialization. The
HAC method of choice informs the rule governing how the clusters are “grown,” ultimately
to form a tree. The natural number of clusters in the dataset must then be determined in order
to truncate the tree at the proper height.

2.1 Dynamic time warping

Since ownership data were only available for a few different years in each country, finding
a suitable point pairing for each ownership vector in time was not a trivial task. Thus, in
order to find the optimal pairwise alignments, we applied the dynamic time warping (DTW)
algorithm (Giorgino 2009), which uses the “average accumulated distortion” as the objective
metric for finding the best matching path.2 DTW computes a warping curve φ(k) with M
elements, each mapped from a pair of time series A and B, each with P and Q observations,
respectively. Thus,

φ(k) = (φa(k), φb(k)) (2.1)

where the selection functions φa ∈ {1, . . . , P} and φb ∈ {1, . . . , Q} are constrained accord-
ingly to preserve continuity and monotonicity. The optimal alignment gives the minimum
deformation D between pairwise sets of observations:

D(A, B) = min
φ

dφ(A, B) (2.2)

where the distortion dφ is given by

dφ(A, B) = 1

C φ

M∑

k=1

d(φa(k), φb(k))cφ(k), (2.3)

1 The data and supporting code are available at www.ce.jhu.edu/sauleh/obls-gbu.
2 The dynamic time warping algorithm was first introduced by Bellman and Kalaba (1959). Its application
was subsequently furthered by Sakoe and Chiba (1978). See Giorgino (2009) for more on its execution in R.
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Table 1 Fitness test for agglomerative clustering

Method Greatest singular value λ

Single linkage 2723.7

Complete linkage 4551.8

UPGMA 883.2

WPGMA 966.1

The test quantity λ is given by λ = ||DM − UM ||2, where DM is the original dissimilarity matrix, while
UM is the ultrametric (separation matrix) for each of the clustering structures considered

with cφ(k) the weighting coefficient in each step, Cφ the normalization constant, and d a
distance metric of choice (we used the Euclidean distance in this case). In the end we obtain
a normalized dissimilarity matrix DM .

2.2 Clustering procedure

The next step we took was finding the HAC method of choice that worked best for our
data. We considered four candidates: the weighted pair-group method with arithmetic
means (WPGMA), the unweighted pair-group method with arithmetic means (UPGMA,
also referred to as the method of averages), the complete linkage method and the single link-
age method. The fitness measure is the Euclidean norm (or greatest singular value) λ of the
difference matrix between the unclustered and clustered pairwise separations (Mérigot et al.
2010). The method of averages produced a λ value of 883.2, which was the smallest of the
four (see Table 1).

The gap test (Tibshirani et al. 2001) provides awell-definedmethod for finding the optimal
group number in a dataset. The test quantity is defined as

Gapn(k) = 1

B

∑

b

log(W ∗
kb) − log(Wk), (2.4)

where Wk is the within-cluster sum of pair-wise distances. The first term on the right-hand
side of Eq. 2.4 is the expectation of log(Wk), obtained by a Monte Carlo simulation of B
samples on a uniform distribution over each row of the pairwise separation matrix; this term
can also be written as E∗{log(Wk)}). The optimal number of clusters k̂ is chosen as the
smallest k such that

Gap(k) ≥ Gap(k + 1) − εk+1 (2.5)

where εk+1 is the simulation error.3 The value of k̂ can therefore be formally given as:

k̂ = argmin
k

Gap(k): Gap(k) ≥ Gap(k + 1) − εk+1 (2.6)

The intuition behind this method is as follows: If we assume the elements of the dataset are
uniformly separated, then the expectation of log(Wk) decreases at a rate of 2

p log(k), where
p is the dimensionality of the dataset (Tibshirani et al. 2001). However, if a certain clustering
method identifies well-defined groups, log(Wk)must be observed to decrease at amuch faster
rate, up to the point of maximum separation. Beyond this point, log(Wk) decreases at a slower
rate than expected (see Fig. 1). For our dataset, the optimal cluster number k̂ is thus 4.

3 The error term is given by εk =
√(

1 + 1
B

)
1
B

∑
b

{
log(W∗

k,b) − 1
B

∑
b log(W

∗
k,b)

}2
, where b is the index

number of the generated sample (Tibshirani et al. 2001).
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Fig. 1 This plot shows the expectation E∗{log(Wk )}, the observation log(Wk ) and the gap statistic Gap(k)
as functions of the number of clusters obtained via the clustering method of best fit. The error bars on Gap(k)
indicate the size of the simulation error εk . As an indicator of how well-separated the clusters are, log(Wk )

decreases more rapidly than its expectation as the number of clusters chosen approaches optimality (k < k̂),
while it decreases less rapidly beyond this value (k > k̂). In this case, k̂ = 4

Table 2 Country groups ranked
by weighted average percentage
bike ownership PBO

Group PBO (%) Countries

1 81 9

2 60 34

3 40 45

4 20 62

Table 2 summarizes the results of our cluster analyses. The group membership or rank of
each country is given in Table 6. Household bicycle ownership is concentrated among a few
countries, as membership increases with decreasing rank.4 In this paper, “group rank” pre-
cisely refers to the level of bicycle ownership in the corresponding group. Group 1 therefore
has the highest average rate of ownership, while Group 4 (the last group) has the lowest rate
of ownership.

3 A brief introduction to networks and assortativity analysis

3.1 Graphs and networks

Graph theory has developed a host of tools for describing groups and associations within
groups. These have been applied to problems such as route finding (shortest path algo-
rithms), network flow problems (e.g. cost-minimization, resource allocation) and matching.
By correctly formulating the network representation of a system, graph theoretic approaches

4 For a complete discussion on the global and group trends, please refer to Oke et al. (2015). Also, trends in
bicycle ownership for each country in the dataset set can be viewed in Appendix B (Ibid).

123



534 Ann Oper Res (2018) 263:529–549

Table 3 Basic graph notation (as
used in this paper) and definitions

Symbol Description

Parameters

u, v Node

du Degree of node u

e Edge

Sets

G(V, E) Graph

V Nodes

E Edges

N (u) Adjacent nodes of u

D Unique degree values

can provide analyses for unearthing and understanding patterns of association (Small 1973;
Newman 2004), growth (Teichmann and Babu 2004; Capocci et al. 2006), selection (Steglich
et al. 2010; Baerveldt et al. 2014) and many more, within the system.

A key motivation for this paper is that a better understanding of proximity contributions
to bicycle ownership would also contribute to efforts to encourage greater ownership and
usage. The geographical layout of the countries already presents a corresponding topology
and since we were interested in studying their associative patterns, a network or graph-based
approach is advantageous.Wall et al. (2011) used a networkmodel to investigate relationships
based on “geographical embeddedness” and corporate activity between nations. Zhukov and
Stewart (2013) also took advantage of geographic topology to formulate their network model
for political diffusion.

Mathematically, a graph is set of nodes and edges. An edge is a line connecting a pair of
nodes in a graph. The degree of a node is number of edges incident from it, and this can be
immediately seen as a measure of the node’s connectedness in the graph. A pair of nodes is
said to be adjacent if the nodes are connected by one or more edges, i.e. one node is at the
tail, while the other is at the head of the connecting edge. For a given node, the set of its
adjacent nodes are its neighbors.

Notation Given a graph G(V, E), with nodes u, v ∈ V and edges euv ∈ E . The tail node of
an edge euv is u and its head node is v. The set of neighboring nodes is denoted by N (u) for
a node u. A brief summary of the relevant graph notation is given in Table 3.

3.2 Mixing

Various properties can be of interest when a system is modeled as a network. Some of
these include patterns of growth and resilience, which are relevant for population networks
and infrastructural systems, respectively. Measures of influence of each node can also be
important. This is especially true for social networks (Anagnostopoulos et al. 2008). If the
nodes already belong to certain groups, another property of interest is mixing, which is
concerned with nature of the connectedness of nodes by their groupings. Mixing patterns
can provide insight into the associational behaviors of entities in a network (Newman 2002;
Hens et al. 2009; Piraveenan et al. 2012).

To quantify the likelihood of nodes in various groups to be connected or cross-connected,
a mixing matrix E is defined such that each element Ei j is given by
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Ei j =
∑

u∈I

∑

v∈J

Auv (3.1)

where Auv is the edge-incidence matrix of the network, and i, j are indicial bijections onto
the groups I ∈ I, J ∈ J , i.e. the index i in the matrix E represents the group I , and so forth.
The matrix A is constructed such that Auv = 1 if there is an edge connecting nodes u and v,
and 0 otherwise. The normalized mixing matrix e is then defined as5

ei j = Ei j
∑|I |

i=1

∑|J |
j=1 Ei j

(3.2)

The mixing coefficient (Newman 2003), which measures the level of connectedness of
nodes in the same group, is defined by

rm =
∑

i eii − ∑
i a

2
i

1 − ∑
i a

2
i

(3.3)

where ai = ∑
j ei j . The error of rm is evaluated by its standard deviation, which, as Newman

has noted (Newman 2003) is similar to that of intraclass correlation measurements (Fleiss
et al. 1969) and given by

σ(rm) = 1

M

∑
i a

2
i + (∑

i ai
)2 − 2

∑
i a

3
i

1 − ∑
i a

2
i

(3.4)

where M is the number of connections (edges) in the network. Our criteria for statistical
significance is given by6

rm
σ(rm)

≥ 5 (3.5)

To measure the likelihood of cross-group mixing, we define the conditional probability P as

P(k|i) = eik∑
j ei j

. (3.6)

Thus, given that a node is in group i , P is the likelihood that its neighbor is in group k.

3.3 Degree assortativity

Assortativity is amore general term that defines nodal associations based on a shared property
in the network. For the purposes of this paper, we consider the term “mixing” as specific to
group association, while “assortativity” is a generalization to other properties. The assorta-
tivity of a network based on the degree of each node is an established metric, first formally
defined by Newman (2002, 2003). When nodes of high degree have more connections with
nodes of high degree, the network is said to be assortative. Ifmore connections appear between
nodes of high degree to those of low degree, then the network is said to be disassortative.

Various measures of assortativity have been defined. The Pearson correlation coefficient,
however, is typically used to measure the assortative strength in a network (Newman 2003;
Foster et al. 2010). Two further definitions are needed before we describe the assortativity
coefficient. First, edbc is the probability that an edge chosen at random in the network connects

5 Subsequent summations over i or j are over the same ranges indicated in Eq. 3.2.
6 This threshold corresponds to the Z -score, for which 3σ or 2σ are commonly employed as the minimum
value for significance. Here, we use the more stringent 5σ threshold (Colquhoun 2014; Foster et al. 2010;
Newman 2002).
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nodes of degrees b and c. Second, the excess degrees of two connected nodes are the degrees
of each respective node without counting the edge connecting them. The excess degree
distribution is given by the probability qc for each degree c in the network. The probability
qc is therefore the probability that for a node chosen at random, the degree of all the other
attached edges except for the edge being considered is c:

qc =
∑

b∈D
edbc (3.7)

The degree assortativity coefficient (Newman 2003) for associations based on node degree
is thus7

rd =
∑

b,c∈D bc(edbc − qbqc)

σ 2
q

(3.8)

where σq is the variance of the excess degree distribution qc given by Newman (2002):

σq =
∑

c

c2qc −
(

∑

c

kqc

)2

. (3.9)

The statistical significance of rd can be evaluated by its size relative to its standard deviation,
which is calculated according to the following Newman (2003):

σ(rd) = 1

M

∑
c q

2
c + (∑

c qc
)2 − 2

∑
c q

3
c

1 − ∑
c q

2
c

(3.10)

where M is the number of edges in the network. For the purposes of this discussion, we
will consider weighted node degree assortativity as significant if the following condition is
satisfied (see footnote 6):

rd
σ(rd)

≥ 5 (3.11)

Assortativity profiles can also be plotted to investigate the property of interest in a network
(Piraveenan et al. 2010). They are useful for observing individual element contributions to
the assortativity or disassortativity of the network.

3.4 A simple network model for bicycle ownership

We consider the 150 countries in our dataset as nodes in an undirected graph whose edges
represent the land borders between adjacent countries. Data on node adjacency or borders can
easily be read from a map, but we obtained a compiled list from Visualign (2013). From this,
we obtained the degree of each node, which represents the number of unique land borders a
country has. These values are shown in Table 6.

A key component of defining a network is defining the criteria for connections between
nodes (and their strength, in the case of a weighted network) (Zhukov and Stewart 2013).
Since we are investigating a network structure with regard to bicycle ownership, we want the
edges to be weighted as a measure of the separation in bicycle ownership between adjacent
countries. In this model, we simplify this calculation by simply using the difference in group
rank, with a maximum possible weight of 4 (closest) and a minimum of 1 (furthest apart).
We therefore define the edge weight w(e) or wuv as

wuv = 4 − |Gr(u) − Gr(v)| , (3.12)

7 Subsequent summations over b or c are on the same set D, except where otherwise noted.
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where Gr(·) ∈ {1, 2, 3, 4} is the group rank. Thus, an edge connecting two nodes in the same
group will have a weight of 4, while the weight of the edge joining two nodes of maximum
group separation will have a weight of 4 − 3 = 1.

The degree of each node can therefore beweighted by the difference in group rank between
the node and each of its neighbors. Since there are no loops or multiple edges in this network,
we can define the weighted degree as follows.

Definition 1 (Weighted degree) Given a node u, the weighted degree is given by dw as

dw(u) =
∑

v∈N (u)

wuv. (3.13)

Following Eq. 3.1, the mixing matrix elements for this network are given by

Ei j =
∑

Gr(u)=i

∑

Gr(v)= j

Auv (3.14)

Wewill use the normalizedmixingmatrix and the corresponding conditional probabilities, as
defined in Eqs. 3.2 and 3.6, tomeasure the group-mixing tendencies in the network. The group
mixing coefficient for this network (Eq. 3.3) will indicate the overall strength of same-group
mixing in the network.

In Sect. 3.3, we described assortativity with respect to the degree distributions of the
nodes. For the purposes of this model, we will now consider the assortativity by weighted
degree, as given by Eq. 3.13. We motivate this as follows: the degree of each node in the
network without considering bicycle ownership groupings is simply a measure of the number
of land borders the represented country has. This value remains the same except political
factors intervene in the creation or destruction of one or more countries. By considering the
weighted degree, the number of neighbors a country has can then be valued by their group
separation, which is the difference between the group rank of the country and that of each
of its neighbors. (We recall from the definition in Eq. 3.12 that the weight increases with
decreasing separation by group). For instance, given two countries A and B with the same
number of neighbors: if the weighted degree of A is 16 and that of B is 8, then A is clearly
more associated with countries whose groups are closer to that of A, while the neighbors of
B are further in separation by group. Based on Eq. 3.8, we now define the weighted degree
assortativity coefficient, WDAC (Leung and Chau 2007; Noldus and Van Mieghem 2015).

Definition 2 (Weighted degree assortativity coefficient,WDAC) For a networkwithweighted
degrees b, c ∈ Dw , where Dw is the set of all the weighted degree values that exist in the
network, the weighted degree assortativity coefficient is given by

rdw =
∑

bc∈Dw bc(ed
w

bc − qbqc)

σ 2
q

(3.15)

The WDAC will indicate the strength of assortativity or disassortativity by the weighted
degrees of each node. We will also consider the value of rdw by the contribution of each
group to investigate underlying behavior.

Finally, we will use assortativity profiles to enable us to visualize the nature of the con-
tribution of each node to the overall assortativeness of the network. When assortativity is
considered with respect to node degree mixing, the average nearest neighbor degree (ANND)
can be used to evaluate the assortativity by observing the trend of ANND as a function of
the degree of each node (Serrano et al. 2007). As we are dealing with the weighted degree
in this case and definition of “neighbor” is equivalent to the “nearest neighbor” for each
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Table 4 Mixing matrix of the
clusters in the bicycle ownership
network

Group 1 2 3 4

1 14 12 8 2

2 12 50 36 14

3 8 36 52 49

4 2 14 49 110

node, we now define the average neighbor weighted degree (ANWD), which is computed
by taking the mean of the weighted degrees of the neighbors of a given node. Averaging the
weighted degrees in the neighbor set in our case also has the added benefit of allowing for
some adjustment for the number of borders a country has. This will be our function of interest
for the assortativity profiles we use here. (See Barrat et al. 2004 for further background on
this quantity.)

Definition 3 (Average neighbor weighted degree, ANWD) For given node u with a neighbor
set N (u), the average neighbor weighted degree is given by

dw
N (u) = 1

|N (u)|
∑

v∈N (u)

wuv. (3.16)

The weighted degree and average neighbor weighted degree values for each country in the
dataset are given in Table 6.
We note here that we did not consider countries in our dataset with degree 0, i.e. those that
do not share a physical land border with any other country. These were Australia, Japan,
New Zealand (Group 2) and the Phillipines (Group 3). The countries with no ownership data
were also excluded from this model. Thus, the United Arab Emirates (Group 2), South Korea
(Group 3) and Tunisia (Group 4) were not included in the analyses, as they were bordered
by countries for which data were not available. The 7 exclusions represent only about 4.7%
of the entire dataset.

4 Results

4.1 Mixing by group

The number of group pairings of neighboring countries is shown in Table 4. The number
of connections increases by decreasing group rank, as expected. The table represents the
symmetric mixing matrix E. The sum of the elements in the upper triangle of E is 347,
which is the number of unique land borders of the countries in the network.

The normalized mixing matrix e is derived from E (according to Eq. 3.2) and evaluates
to

e =

⎡

⎢⎢⎣

0.027 0.023 0.017 0.004
0.097 0.071 0.027

0.116 0.112
0.251

⎤

⎥⎥⎦ (4.1)

The group mixing coefficient rm is 0.204 and σ(rm) = 0.0139, a 15σ value. This indicates
that, overall, associations between members in the same group are more likely.
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Fig. 2 Grayscale map of conditional probabilities of group mixing matrix given in Eq. 4.2. The colors get
darker as the probabilities approach zero. The map shows that mixing is stronger between members of the
same group (particularly so for Group 4) and weakest for those that are furthest apart in bicycle ownership

Finally, we compute the matrix of conditional probabilities that the neighbor of a given
node is in Group j given that the node is in Group i .

P =

⎡

⎢⎢⎣

0.378 0.324 0.243 0.054
0.106 0.442 0.327 0.124
0.055 0.226 0.366 0.354
0.010 0.069 0.284 0.637

⎤

⎥⎥⎦ (4.2)

This matrix indicates that Group 1 countries are more likely to be neighbors to other Group 1
countries. However, the likelihood that Group 2 members are neighbors to those Group 1 is
nearly just as likely, as P12 = 0.324 and P11 = 0.374. A similar trend follows for each group
in that their neighbors are most likely to be members of the same group, while the next most
likely neighbors occupy the nearest group. However, the spread between these likelihoods is
greatest for Group 4, indicating that its members are most closely linked.

To better illustrate these transitions, we plot a grayscale map of P (Fig. 2).

4.2 Weighted degree assortativity

We compute the weighted degree assortativity coefficient for the network, and also for each
of the Groups 1 through 4. The results are shown in Table 5. For the entire network, the
value rdw = 0.05 (≈ 4σ(rdw)) indicates a statistically insignificant (by Eq. 3.11) weighted
degree assortativity. However, when the contributions are considered by group relative to the
network, further details emerge. For Group 1, the strength of disassortativity is quite small,
but this is statistically significant. Group 4, however, is strongly disassortative with respect
to the entire network (rdw = −0.519 ≈ −41σ(rdw)). Thus, both Group 1 and Group 4
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Table 5 Weighted degree
assortativity coefficients, with
standard deviations and relative
values

Group rdw σ(rw
d ) |rdw /σ(rw

d )|

1 −0.092 0.0157 5.9

2 0.383 0.0128 29.9

3 0.463 0.0129 35.9

4 −0.519 0.0126 41.1

All 0.050 0.0115 4.3

Fig. 3 Assortativity profile for the network (by average weighted neighbor degree) showing all groups. (Color
figure online)

member countries of high weighted degree significantly tend to be connected to countries of
low weighted degree (and vice versa).

Groups 2 and 3 are assortativewith respect to the entire network, a tendency that is stronger
for Group 3. The members of these two groups are therefore more likely to be connected
with nodes of similar weighted degree.

4.3 Assortativity profiles based on average weighted degree of neighbors

We plot the assortativity profiles by average weighted neighbor degree for the entire network
(Fig. 3) and also by the contribution of each group (Fig. 4). The results support the coefficient
values computed in Sect. 4.2.

While the profile of Group 1 does indicate a negative trend, the sparsity of points explains
why its disassortativity is weak. Group 3 shows the stronger assortative profile compared to
Group 2 (Fig. 4b, c). The profile for Group 4 (Fig. 4d) shows an accumulation of lowweighted
degree points with much higher weighted degree neighbor averages. Outlying points in the
group profiles are labeled and discussed in Sect. 5.

5 Discussion

The mixing matrix and its associated conditional matrix P indicate that countries in the same
group are more likely to be found near each other than to those from other groups. This effect
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A B

C D

Fig. 4 Assortativity profiles for Groups 1 through 4 based on the average weighted neighbor degree. The size
of the markers indicates the actual degree of the node

is most pronounced for Group 4, indicating that many of them are geographically proximal.
Furthermore, countries in Groups 1 and 3 are almost as likely to be found next to those in
Groups 2 and 4. Thus, for Groups 1 and 3, there is most likely to be a cluster separation of 0
or 1 in relation to their neighbors. For all the groups, member countries are least likely to be
proximally associated with those of widening separation by ownership group.

We consider assortativity with regard to weighted degree. Overall, the network is mildly
assortative, based on the value of the computed assortativity coefficient. Thus, for all nodes in
the four groups, there is a slight tendency for associations between nodes of similar weighted
degree. This can be interpreted by saying countries with increased connectivity (in terms of
both the number of neighbors and the closeness of group) are found adjacent to countries with
similar characteristics. At the group level, this is not always the case. For Groups 1 and 4, this
behavior is opposite (i.e. disassortative) andmore strongly so forGroup 4. As the connectivity
of member countries increases, the average weighted neighbor degree reduces, which is a
result of the reduced likelihood that those neighbors are in the same group. The highest
point in Fig. 4d represents Mongolia which, while having only 2 neighbors, is connected to
countries, namely Russia and China, with considerably more neighbors and higher bicycle
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ownership. The furthermost point along the x-axis represents DR Congo, which has the
largest number of land borders in Africa.

Group 1 in particular shows the opposite trend, but its seeming disassortativity is insignifi-
cant, as can be inferred from the fact that there are far fewer countries in Group 1 compared to
the other groups. In Fig. 4a, Burkina Faso is at the lowest point in the profile, indicating that it
is surrounded by countries with a greater degree of cluster separation. The furthest points, i.e.
those with the highest weighted degree (Austria and Germany) have an even greater number
of neighbors. That they are higher up than Burkina Faso indicates that they are surrounded
by neighbors closer in ownership.

For Groups 2 and 3, there is a strong assortative trend. In Group 2, two countries are found
well beyond a weighted degree of 23: Brazil and China (Fig. 4b). While China has the largest
degree (number of neighbors) in the set, its neighbors are further apart (in terms of ownership
level), hence its position in the profile. Brazil also has a large number of neighbors but they
are more distantly separated by group, which is why it is not further up in the profile. The
points closest to the origin of the plot represent countries with only 2, 1 or no neighbors (e.g.
USA, Canada, Ireland, Indonesia), indicating their limited influence in spite of their high
ownership levels. Group 3 countries are more strongly assortative. As seen in Fig. 4c, Russia
lies further up the x-axis than any other member of Group 3, as it has just as many land
borders as China (13) but its weighted degree is larger—a potential indicator of its influence.

6 Conclusion and outlook

We have presented a simple network model that enables us to further investigate how the
level of ownership in the countries considered is related to their neighbors. To do this, we
defined a measure of connectivity for each pair of countries based on the presence of a shared
land border and the separation between the ownership group occupied by each. We then
applied principles of mixing and assortativity to describe patterns in associations between
the bicycle ownership groups defined in an earlier study (Oke et al. 2015). Mixing was
considered strictly on the basis of group, while assortativity was considered by the measure
of connectivity defined—the weighted degree.

Our results show that countries with high ownership are generally likely to be neighbors
to those with similar ownership or just one step lower. The countries with the lowest owner-
ship, however, are the most isolated from other countries in terms of ownership separation.
Furthermore, our weighted degree assortativity analyses enable us to better understand how
ownership and proximity are related between countries and their neighbors in the four differ-
ent groups.We observe that on the whole, weighted degree assortativity within the ownership
network is statistically insignificant. However, for the countries in Groups 2 and 3, assorta-
tivity is observed, indicating that high weighted degree countries are more connected with
those of equally high weighted degree. The opposite is the case for Groups 1 and 4, the lat-
ter exhibiting stronger weighted degree disassortativity. The group assortativity profiles by
average neighbor weighted degree provide greater insight into individual country behavior
and may serve as starting points for further investigations into these countries.

This work is an initial step toward applying network analysis tools in an effort to not
only understand the factors influencing bicycle ownership, but also how the ownership levels
in the countries themselves indicate those of neighboring countries. While the nodes in
this network are largely static with regard to position (i.e. the degrees will largely remain
the same), the levels of ownership can certainly change. For policymakers trying to weigh
options to improve the quality of life in their countries, regions or continents by encouraging
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more ownership of bicycles, the analyses present a few approaches. For instance, if a regional
coalition is interested improving the level of bicycle ownership in their member countries,
initiatives might be better piloted in the most connected country.

Adynamicmodel of how the nature of the networkmight evolve in timewould be useful for
policymakers trying to weigh options to improve the quality of life in their countries, regions
or continents by encouraging more ownership of bicycles. In such an instance, knowledge of
how countries have moved into higher-ownership groups and their respective weighted con-
nectivities can inform the selection of a pilot country in which to launch targeted initiatives,
whose benefits would hopefully influence its neighbors in time. With more bicycle owner-
ship data and future clustering analyses, perhaps more groups might also emerge. We would
also like to better define the nature of country-to-country influence by accounting for other
factors, such as climate, mobility, income, history (political and cultural) and topography. In
our next round of efforts, we plan to utilize readily available data on some on these features
to further investigate the nature of these relationships to whatever degree they exist. Further,
with a more accurate and translatable network representation, we can hopefully provide more
insights for stakeholders and policymakers in sustainable transit.
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Appendix: Country parameters

Table 6 lists the degree parameters for each country. The code (written in Python) and
supporting data for this work are available at http://modl.jhu.edu/resources/spatial-bicycle-
ownership/.

Table 6 Degree, weighted degree, average neighbor weighted degree and group membership of the countries
in the dataset

ISO Country Degree Group Weighted
degree

Average neighbor
weighted degree

AFG Afghanistan 5 3 16 18

AGO Angola 4 4 15 23.5

ALB Albania 3 3 11 13.7

ARE United Arab Emirates 0 2 0 0

ARG Argentina 5 2 17 14.8

ARM Armenia 3 4 11 15.7

AUS Australia 0 2 0 0

AUT Austria 7 1 22 17.3

AZE Azerbaijan 4 4 14 21.3

BDI Burundi 3 4 11 24.7

BEL Belgium 4 2 14 17.5

BEN Benin 4 3 12 12.3

BFA Burkina Faso 6 1 10 12.7
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Table 6 continued

ISO Country Degree Group Weighted
degree

Average neighbor
weighted degree

BGD Bangladesh 2 4 5 18

BGR Bulgaria 5 4 14 16

BIH Bosnia and Herzegovina 3 3 11 17.3

BLR Belarus 5 3 19 23.8

BLZ Belize 2 2 5 8.5

BOL Bolivia 5 3 17 15.8

BRA Brazil 9 2 29 12

BTN Bhutan 2 4 5 27.5

BWA Botswana 4 4 15 20

CAF Central African Republic 6 4 24 24

CAN Canada 1 2 4 7

CHE Switzerland 4 2 14 22

CHL Chile 3 3 10 15.7

CHN China 13 2 36 15

CIV Cote d’Ivoire 5 3 15 13.4

CMR Cameroon 5 4 20 17.4

COD Congo DRC 9 4 33 20

COG Congo 5 4 20 20

COL Colombia 5 3 17 12.8

COM Comoros 0 4 0 0

CRI Costa Rica 2 2 5 6

CZE Czech Republic 4 2 14 23

DEU Germany 9 1 30 14.6

DJI Djibouti 3 4 12 17.3

DNK Denmark 1 1 4 30

DOM Dominican Republic 1 4 4 4

ECU Ecuador 2 2 5 15

EGY Egypt 2 4 7 16.5

ERI Eritrea 4 4 16 21.8

ESP Spain 3 3 10 9.7

EST Estonia 2 2 6 28

ETH Ethiopia 6 4 24 18.2

FIN Finland 3 1 10 19.7

FRA France 6 2 22 15.5

GAB Gabon 2 4 8 20

GBR United Kingdom 1 3 3 3

GEO Georgia 4 4 14 21.3

GHA Ghana 3 4 7 11.3

GIN Guinea 6 4 21 12.5

GMB Gambia 1 3 3 17

GNB Guinea-Bissau 2 3 6 19
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Table 6 continued

ISO Country Degree Group Weighted
degree

Average neighbor
weighted degree

GRC Greece 4 3 14 14

GTM Guatemala 3 4 8 6.7

GUY Guyana 3 2 10 15

HND Honduras 2 3 6 6.5

HRV Croatia 5 3 17 15.6

HTI Haiti 1 4 4 4

HUN Hungary 7 3 21 18.1

IDN Indonesia 1 2 3 6

IND India 6 3 19 13.2

IRL Ireland 1 2 3 3

IRQ Iraq 2 4 7 13

ISR Israel 3 3 9 5.7

ITA Italy 4 2 14 17.3

JOR Jordan 2 4 7 8

JPN Japan 0 2 0 0

KAZ Kazakhstan 5 4 17 24.2

KEN Kenya 5 4 18 21.2

KGZ Kyrgyzstan 4 4 14 21.3

KHM Cambodia 3 2 12 15.7

KOR Republic of Korea 0 3 0 0

LAO Laos 5 2 20 18.4

LBN Lebanon 1 4 3 9

LBR Liberia 3 4 11 14.7

LKA Sri Lanka 0 3 0 0

LSO Lesotho 1 4 4 24

LTU Lithuania 4 3 15 24.5

LUX Luxembourg 3 2 11 22

LVA Latvia 4 3 15 20.3

MAR Morocco 1 4 3 10

MDA Republic of Moldova 2 3 7 20

MDG Madagascar 0 4 0 0

MDV Maldives 0 3 0 0

MEX Mexico 3 3 9 6.7

MKD Macedonia 4 2 12 14.8

MLI Mali 6 3 18 14.2

MLT Malta 0 3 0 0

MMR Myanmar 5 2 17 19

MNE Montenegro 4 3 15 14.8

MNG Mongolia 2 4 5 38.5

MOZ Mozambique 6 4 21 18.5

MRT Mauritania 2 4 7 17.5
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Table 6 continued

ISO Country Degree Group Weighted
degree

Average neighbor
weighted degree

MUS Mauritius 0 2 0 0

MWI Malawi 3 3 11 24.7

MYS Malaysia 2 3 6 9

NAM Namibia 4 4 15 20

NER Niger 5 4 15 15

NGA Nigeria 4 4 15 16.8

NIC Nicaragua 2 4 5 5.5

NLD Netherlands 2 1 7 22

NOR Norway 3 1 10 19.7

NPL Nepal 2 4 5 27.5

NZL New Zealand 0 2 0 0

PAK Pakistan 3 3 11 23.7

PAN Panama 2 3 7 11

PER Peru 5 4 13 15.6

PHL Philippines 0 4 0 0

POL Poland 7 2 23 23

PRT Portugal 1 3 4 10

PRY Paraguay 3 3 10 21

ROM Romania 5 4 15 17.4

RUS Russia 13 3 41 16.1

RWA Rwanda 4 4 14 21.8

SDN Sudan 6 4 24 19.7

SEN Senegal 5 4 17 11

SLE Sierra Leone 2 4 8 16

SOM Somalia 3 4 12 18

SSD South Sudan 7 4 27 22.1

STP Sao Tome and Principe 0 4 0 0

SUR Suriname 2 3 6 19.5

SVK Slovakia 5 2 17 21

SVN Slovenia 4 1 11 18.5

SWE Sweden 2 1 8 10

SWZ Swaziland 2 4 8 22.5

TCD Chad 5 4 20 19.6

TGO Togo 3 3 9 9.7

THA Thailand 4 2 15 13.8

TJK Tajikistan 4 4 13 21.3

TKM Turkmenistan 3 4 11 17.3

TLS Timor-Leste 0 4 0 0

TTO Trinidad and Tobago 0 2 0 0

TUN Tunisia 0 3 0 0

TUR Turkey 6 3 19 12.3
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Table 6 continued

ISO Country Degree Group Weighted
degree

Average neighbor
weighted degree

TZA Tanzania 8 3 27 18.8

UGA Uganda 5 3 16 23.8

UKR Ukraine 7 3 25 20.4

URY Uruguay 2 2 8 23

USA United States 2 2 7 6.5

UZB Uzbekistan 5 4 19 14.2

VEN Venezuela 3 3 10 18.7

VNM Vietnam 3 2 12 22.7

VUT Vanuatu 0 4 0 0

YEM Yemen 0 4 0 0

ZAF South Africa 6 4 24 13

ZMB Zambia 8 3 26 19

ZWE Zimbabwe 4 4 15 21.5

ZZZX Serbia 7 2 20 15
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