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a b s t r a c t

Energy and climate market policy is inherently multiobjective and multilevel, in that desired choices
often conflict and are made at a higher level than influenced actors. Analyzing tradeoff between reducing
emissions and keeping fuel prices low, while seeking compromise among producers, traders, and con-
sumers is the crux of the policy problem. This paper aims to address this issue by combining multi-
objective optimization problems, which allow the study of tradeoff between choices, with equilibrium
problems that model the networks and players over which these policies are chosen, to produce a
formulation called a Multiobjective Program with Equilibrium Constraints. We apply this formulation to
the United States renewable fuel market to help understand why it has been so difficult in releasing the
2014 mandate for the RFS (Renewable Fuel Standard). The RFS ensures that a minimum volume of
renewable fuel is included in transportation fuel sold in the United States. Determining the RFS volume
requirements involves anticipating market reaction as well as balancing policy objectives. We provide
policy alternatives to aid in setting these volume obligations that are applicable to a wide variety of
climate and energy market settings and explain why the RFS is not an optimal policy for reducing
emissions.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Climate market policy, in the form of taxes, cap and trade, and
other policy instruments, will play an essential part in reducing
GHG (greenhouse gas) emissions. Lowering fossil fuel production,
increasing renewable fuel production, promoting clean technology,
and supporting sustainability and conservation can all be accom-
plished with the correct policy structure [5,31,43]. Explicit models
and quantitative assessments have the advantage of clarifying un-
derlying assumptions and providing specific predictions. Thus,
mathematical models allow policy makers to assimilate knowledge
from different domains, which is essential for tackling energy
sustainability issues [1,27,45].

However, most large-scale equilibrium models (e.g. Ref. [27] do
not endogenously determine climate policy, while models that do
ering, Johns Hopkins Systems
218, USA.
), adam.christensen@jhu.edu
determine optimal climate policy (e.g. Ref. [30] are often simplified
and don't capture complete market dynamics. This paper is the first
to provide a practical framework to endogenously determine
climate policy while accounting for detailed market dynamics by
capturing all relevant players in a bilevel optimization framework,
and providing relevant policy choices along with tradeoff through
multiobjective optimization. In addition to this contribution, the
paper explicitly applies this framework to the Renewable Fuel
Standard.

The gap between policy and mathematical modeling often re-
lates to mathematical modeling not being flexible under assump-
tions, and policymakers requiringmore than one “answer” tomake
an informed decision. MOPECs (Multiobjective Programs with
Equilibrium Constraints) solve both of these problems by providing
a series of interpretable policy alternatives (the Pareto surface),
while making sure the mathematical modeling accounts for the
characteristics that make up policy study (Fig. 1). MOPECs have a
number of useful applications [6,13,37] including energy, environ-
ment, health, and transportation, but they have not been applied to
yet permit markets and climate policy. Note that our acronym
MOPEC stands for multiobjective programs with equilibrium
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Fig. 1. MOPECs combine mathematical structure that allows the study of policy and
provides viable alternatives as opposed to a single answer.

1 See http://www.gpo.gov/fdsys/pkg/FR-2014-12-09/pdf/2014-28163.pdf.
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constraints while [6] use MOPEC to mean a different type of
problem structure (Multiple Optimization Problems with Equilib-
rium Constraints). Nonetheless, their structure is relevant to solv-
ing equilibrium problems in general. Ref. [37] used the acronym to
mean Multiobjective Optimization Problems with Equilibrium
Constraints, which is the same structure we have used in this paper.

Energymarket equilibria under policy often involve decisions by
producers, traders, transporters, and consumers at multiple levels
[2,4]. A government (or many) is involved in regulation, regarding
emissions, extraction, and delivery. Markets have long been
modeled using equilibrium problems formulated as complemen-
tarity problems [49], and many modeling techniques exist for
representing market power [7,22] and integer restrictions [20,21].
However, modeling policy has often, as with earlier applications,
only been performed with one objective. One reason is the large
computational cost of bilevel, multiobjective optimization prob-
lems [11,44]. With recent algorithmic developments, a multi-
objective analysis with equilibrium constraints can now be
implemented [41,42].

We look at the current biofuel policy in the United States, which
is a good example to consider given the current debate about its
usefulness and implementation. The policy is also localized to the
United States, making it easily adaptable to the ideas in this paper.
Furthermore, we can make a significant contribution to this debate
through our framework as we can analyze the tradeoffs between
emissions and welfare, while accounting for individual participants
in this market. Policies pertaining to biofuels also have to deal with
both taxes and caps, so we can display the flexibility of our
framework.

Due to climate change, energy security concerns, international
politics, and a focus on renewable and sustainable sources of en-
ergy, biofuels have taken a central place in sustainable energy de-
bates. In contrast to other renewables, such as wind and solar, that
have problems of intermittency, storage, and transportation; the
final products of liquid biofuels can potentially be drop-in re-
placements for liquid fossil fuels. First generation biofuels from
seeds, grains, or sugars are widely produced now, but are unsus-
tainable for future production [39]. Large-scale production of those
biofuels requires large amounts of arable land, competing with
foodcrops. Moreover, many of these biofuels are inefficient on a
lifecycle basis, e.g., corn ethanol, which cannot provide much more
than a 20% reduction in greenhouse gas emissions. Hence, pro-
moting biofuel production requires an aggressive policy, which the
United States implements with a wide variety of overlapping in-
struments including the RFS (Renewable Fuel Standard), tax credits,
and import tariffs. There have been government policies and R&D
support directed at increasing biofuel production, lowering its cost,
and improving its efficiency. The US produces an average of 16
billion gallons of biofuels (mostly corn ethanol and biodiesel)
annually and with the passage of the EISA (Energy Independence
and Security Act) of 2007, aims to produce 36 billion gal/yr by 2022,
including 21 billion gal/yr from second generation advanced biofuels
that have much lower greenhouse gas emissions [16]. Federal
biofuel subsidies were over $6 billion in 2010, not counting R&D
[15].

In order to comply with the RFS oil refiners must hold the
mandated number of tradable compliance certificates called RINs
(renewable identification numbers). RINs are the liquid fuel
equivalent of a REC (renewable energy certificate) used in elec-
tricity markets to comply with a RPS (renewable portfolio stan-
dard). A RIN is generated by the producer of biofuel, who sells the
attached RIN and biofuel to the blender. The blender then separates
the RIN from the biofuel and sells it to an obligated party (refiner).
Refiners can sell excess RINs they accumulate to other obligated
parties. Along with this cap and trade systemwhere RIN credits are
tradable/bankable/deficit-able, there are a number of overlapping
policies such as production tax credits directed tomultiple points in
the supply chain depending on fuel type, the BlendWall (ethanol is
limited to 10% of demand of gasoline), import tariffs and tax rates,
which are different for each fuel [8,9]. Hence, biofuel markets in the
US are difficult to model exemplified by the fact that at the time of
this writing, EPA (Environmental Protection Agency) had decided to
pull back the proposed rule that established volume obligations in
2014;1 this rule was released over a year late in July 2015. In the
current climate, we need new methods and insights for sufficient
production of sustainable biofuels to meet society's energy and
environmental needs.

The paper proceeds as follows. The next section describes the
problem definition and terminology for MOPECs. After a short
introduction on US Biofuel policy in Section 3, we then formulate
this policy as aMOPEC in Section 4 and provide numerical results in
Section 5. We conclude with comments about our results and the
usefulness of MOPECs in informing policy.
2. Background terminology, problem definition, and a
solution algorithm for MOPECs

Table 1 describes the mathematical terminology used in this
paper for MOPECs.

Multiobjective optimization problems [50] allow the study of
tradeoff between conflicting policy decisions, while equilibrium
problems model the networks over which these policies are cho-
sen. Combining these two types of optimization problems produces
a MOPEC, mathematically shown below.

minFðx; yÞ ¼ ½f1ðx; yÞ; f2ðx; yÞ; f3ðx; yÞ; :::; fnðx; yÞ�
s:t: ðx; yÞ2U

y2SðxÞ
(1)

where the continuous variables x2<nx , y2<ny are, respectively, the
vector of upper-level, lower-level variables, ffiðx; yÞgni¼1 in C2 are the
upper-level objective functions, U is the joint feasible region be-
tween these sets of variables and SðxÞ is the solution set of the
lower-level problem that can be an optimization problem, a NCP
(nonlinear complementarity problem) or a VI (variational
inequality) problem [18]. In this paper, we focus on SðxÞ as an NCP
[10]: Having a C2 function g : <nz/<nz , a NCP is to find a vector
z2<nz such that (componentwise):

http://www.gpo.gov/fdsys/pkg/FR-2014-12-09/pdf/2014-28163.pdf


Table 1
Definition of terms.

Symbol Interpretation

x Vector of continuous upper-level decision variables (taxes, caps, and other climate policy instruments)
y Vector of continuous lower-level decision variables (production, consumption, prices of energy markets)
fi Objective functions to be optimized at the upper-level (social welfare, greenhouse gas (GHG) emissions, producer profit)
gjðx; yÞ Constraint functions for the energy and climate policies and markets

S. Siddiqui, A. Christensen / Energy 94 (2016) 316e325318
z � 0; ; gðzÞ � 0; ; zTgðzÞ ¼ 0 (2)

The structure of (2) has been used extensively to model energy
markets (e.g. Ref. [27]. Our contribution is to extend (2) by using the
formulation (1) to model such markets and policy interventions
within. This is also one of the main extensions from Ref. [9].

For MOPECs, in contrast to single-objective optimization, the
output is a set of Pareto optimal solutions (or Pareto frontier). A
solution point is Pareto optimal if there is no other equilibrium point
that improves at least one objective function without detriment to
one or more other objective functions [32].

Definition 1. The vector Fðbx; byÞ is said to dominate another vector
Fðx; yÞ, if and only if fiðbx; byÞ � fiðx; yÞ for all i ¼ 1, …,n and
fjðbx; byÞ< fjðx; yÞ for at least one j. A point ðx*; y*Þ2U; y*2Sðx*Þ is
said to be Pareto optimal or an efficient point for Eq. (1) if and only
if there does not exist ðx; yÞ2U; y2SðxÞ satisfying Fðx; yÞ< Fðx*; y*Þ.
The vector Fðx*; y*Þ is then called a non-dominated or non-inferior
point, and specifically a Pareto point. The set of all Pareto points is
referred to as the Pareto frontier.

While MOPECs are a natural fit for modeling policy in energy
markets, their use has been limited mainly because of the high
computational cost and lack of efficient algorithms [37]. In partic-
ular, constraints (2) often form a disjoint, non-convex feasible re-
gion resulting in the inability to obtain global Pareto optimal
solutions. Locating efficient Pareto optimal solutions with a convex
feasible region has also not been possible as several optimization
problems need to be solved to obtain a good representation of the
Pareto set. Recent advances in algorithms for MPECs (Mathematical
Programs with Equilibrium Constraints) (e.g., [23,24] and MO
(multiobjective optimization) problems (e.g. Refs. [12,25] have
resulted in overcoming these hurdles, and this paper aims to utilize
such recent advances to solve large scale MOPECs.
2.1. Solving the MOPEC

The MOPEC algorithm used in this paper involves combining an
efficient, gradient-based MPEC algorithm with a MO (multi-
objective) algorithm that generates several Pareto points with one
application of the MPEC optimization procedure. This algorithm is
developed by combining two existing algorithms, and is the first
time that these two algorithms have been combined (Appendix B)
to solve a MOPEC. Three different MPEC algorithms were tested:
the penalty method [42], a nonlinear method [51], and a smoothing
method for yTgðx; yÞ ¼ 0 by Ref. [44]. We tested two different MO
algorithms: a gradient-based computationally efficient modifica-
tion of the NBI (Normal Boundary Intersection) method [41] and
the ε-constraint method [34]. Table 2 provides a summary of the
methods used to verify the generation of the Pareto frontier.

The algorithm that provided the most computationally efficient
generation of the Pareto set is outlined below. Other methods took
more computational time and generated Pareto sets that were a
subset of this method. The complementarity problem takes less
than 5 s to run, however, it is not successful in generating Pareto
optimal points when looped over a number of policy choices. The
points generated are feasible equilibria, but not on the border of the
Pareto frontier. Note that in bilevel (and equilibrium) problems,
multiplicity of solutions (and equilibria) is an issue researchers
need to account for. In our formulation, we assume that if we get a
Pareto point, there could be several solutions at that point. Since
our paper focuses on generating the Pareto frontier, this is not an
issue. But in our policy analysis section, we note that there could be
several policies that result in the same Pareto point. For simplicity,
consider a biobjective problemwhere f ðx; yÞ ¼ ½f1ðx; yÞ; f2ðx; yÞ�. We
use the penalty method (for details on choosing L > 0, refer to the
theorems in Ref. [42] to reformulate the problem to satisfy
constraint qualifications.

minf ðx; yÞ þPny

i¼1
Li
�
vþi þ v�i

�
; s:t: ðx; yÞ2U; y � 0; gðx; yÞ � 0

u� �vþ þ v�
�
¼ 0; u ¼ yþ gðx; yÞ

2
;
�
vþ � v�

�
¼ y� gðx; yÞ

2

where vþ; v� are non� negative variables :
(3)

The next step is to find the individual local minima, (we assume
they exist and are finite), and reformulate the MO problem as fol-
lows [41]:

min
x;y;t2<þ;b2<þ

t s:t:

 
1

0

!
bþ t

 
0

1

!
¼ f ðx; yÞ þPny

i¼1
Liðvþi þ v�i

�
ðx; yÞ2U; y � 0; gðx; yÞ � 0

u� �vþ þ v�
�
¼ 0;u ¼ yþ gðx; yÞ

2
;
�
vþ � v�

�
¼ y� gðx; yÞ

2

where vþ; v� are non� negative variables :
(4)

The goal in the method is to use the history of iterates from
problem (4) to obtain the Pareto frontier. Hence, b is a decision
variable in Eq. (4), which is solved using a quasi-Newton method.
The next step is to control the history of iterates when solving Eq.
(4) to obtain the Pareto frontier. Recall the Newton method [3] for
finding a local minimum for a single-objective optimization prob-
lem. To find where the first derivative of an objective function is
zero (assume z ¼ [x, y]):

f 0ðzÞ¼ f 0ðzmÞþ f
00 ðzmÞðz�zmÞ¼ 0; z¼ zm�

h
f
00 ðzmÞ

i�1
f 0ðzmÞ

(5)

where the subscriptm represents successive better approximations
of the solution z*, i.e., zm/z*. Under favorable conditions [3]
convergence is obtained iteratively, where

zmþ1 ¼ zm � dm (6)

dm ¼
h
f
00 ðzmÞ

i�1
f 0ðzmÞ ¼ H�1

m gm (7)

Since this is a derivation from the quadratic Taylor series of the
objective function, approximating the Hessian Hm can prove



Table 2
Solution approaches to solving the multiobjective program with equilibrium constraints. Pareto points generated and computation time in seconds is also displayed.

Mathematical programs with equilibrium constraints algorithms

[42] [51] [44]

Multiobjective
Algorithms

[41] Used to generate Pareto Frontier (36 points,
7231s)

Tested and verified Pareto Frontier (22 points,
12531s)

Tested and verified Pareto Frontier (29 points,
22531s)

[34] Tested and verified Pareto Frontier (20 points,
17526s)

Tested and verified Pareto Frontier (21 points,
23526s)

Tested and verified Pareto Frontier (18 points,
35478s)
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troublesome. Another step, called the line search method in some
cases, is added:

zmþ1 ¼ zm � amdm (8)

The am above in Eq. (9) is called the steplength, and dm is the
direction. However, since Eq. (4) is being optimized over three sets
of variables, one can rewrite Eq. (8) as follows:0@ z

t
b

1A
mþ1

¼
0@ z

t
b

1A
m

�
0@ amdx

amdt
amdb

1A
m

(9)

To generate a minimum number of points on the Pareto frontier,
limiting the magnitude but keeping the same direction of0@ amdx

amdt
amdb

1A
m

will enable the successive approximations of z* points

to have a certain maximum distance in between them. Note that
the distance between two successive points on the generated Par-
eto frontier is given by the size of amdb, which is the amount the
variable b “steps” towards the solution. Since it is assumed that all
objective functions have been normalized, the magnitude of amdb
can be controlled to generate a desired number of Pareto points. In
general, to generate p points, set Vm ¼ 1/(p� 1), the quantity varied
by the user to help obtain a pre-specified number of Pareto points.
Apply a filter [35] to get points that are not Pareto dominated.0@ z

t
b

1A
mþ1

¼
0@ z

t
b

1A
m

� Vm

am
��db��

0@ amdx
amdt
amdb

1A
m

(10)

Note that this method can handle both non-convex and
discontinuous feasible regions [41]. For the Pareto frontiers
generated with this method, we verified Pareto optimality by nu-
merical tests and the other methods discussed above. All solution
points in the next section have thus been numerically verified.
2 See http://www.gpo.gov/fdsys/pkg/FR-2013-11-29/pdf/2013-28155.pdf, last
accessed September 28, 2015.
3. United States biofuel market and renewable fuel standard

This section discusses the place of biofuels in the renewable fuel
standard, along with the market issues surrounding the economic
viability of biofuels on a large scale. We only present the relevant
information to formulate the MOPEC. For detailed information,
please refer to Ref. [9,8].

The Energy Independence and Security Act of 2007 (Public Law
110e140) contained a number of programs and incentives for bio-
fuels; indeed, Title II of the act is titled Energy Security through
Increased Production of Biofuels. That title redesigned the RFS,
which is the primary biofuels policy in the US. The RFS measures
fuels on a lifecycle GHG (greenhouse gas) basis as well as having
qualifications about what feedstocks can be used. In general, new
fuels being incentivized in the RFS are divided into categories each
with their own GHG reduction to the average gallon of gasoline sold
in 2005: Cellulosic (�60%), Biomass-based Diesel (�50%), Advanced
Fuel (�50%), and Renewable Fuel (�20%). Congress defined these
new fuel classes in order to create volume obligations for each
separate type of fuel. Table 3 shows the requirements under the RFS
under the statute (law), 2013, projected for 2014 by the EPA, and
actual 2014 volumes released by EPA in July, 2015. Note that the
cellulosic fuel category forms a minute part of the mandate, and
thus is not modeled in our analysis, but interested readers should
refer to [26].

Currently, EPA is using their authority to waive down the overall
requirement to use biofuel as a transportation fuel.2 Opponents of
the RFS say that infrastructure doesn't exist to use higher blends of
ethanol while supporters of RFS say that it was created to drive
market change in transportation fuel and waiving the requirement
undermines the original intent of the law.

Any supplier of petroleum-based transportation fuel is consid-
ered an obligated party under the RFS. In our model, the obligated
parties are refiners of crude oil. Obligated parties demonstrate
compliance with the RFS by collecting a mandated number of cer-
tificates, referred to as RINs, and retiring them to the EPA (Envi-
ronmental Protection Agency) at the end of a year. RINs are
generated by a producer of biofuel and can be banked for the next
year's compliance or traded among obligated parties, similar to
other cap-and-trade policies. There are five different types of RINs
that can be generated under the RFS and are enumerated as D3eD7,
but we only model D4 (biodiesel, RINs), D5 (advanced RINs) and D6
(renewable fuel RINs) as D3 and D7 RINs make up less than 1% of
the RINs produced. The RFS is a nested mandate, in that the D4 RIN
can be used to satisfy the renewable fuel, advanced fuel, and
biomass based diesel mandate. Similarly, the D5 RIN can be used to
satisfy the advanced fuel and renewable fuel mandate. The D6 RIN,
in our model, only satisfies the renewable fuel mandate.

Another important policy in this model used to promote biofuel
production is the Biodiesel Tax Credit [39]. This tax credit, at $1/
gallon, is given directly to the biodiesel producer and is decided by
the United States Congress.

Both the tax credit and RFS mandated volumes will be upper-
level decision variables in our model, unlike previous papers
which take these values as given. The next section describes how
we will formulate this problem as a MOPEC.

4. Formulation of biofuel market and RFS as a MOPEC

The framework implemented here is general and can be used for
any setting, so we encourage the reader to analyze this section as a
case study for the utility of MOPECs. Asmentioned before, we chose
this application because it is simple enough to grasp right away and
contains all the components we want to highlight in our model.

The model presented in this paper is an extension of the
complementarity model presented in an earlier paper [9] but can
be applied to other market models as well (e.g., [48]. The main
extension is that while the complementarity model in Ref. [9] took
the RFS mandated volumes as inputs, this model uses a MOPEC to

http://www.gpo.gov/fdsys/pkg/FR-2013-11-29/pdf/2013-28155.pdf


Table 3
2014 Renewable fuel standard mandate (Billions of gallons of production).

Fuel Category Statute 2013 2014 (projected) 2014 (Actual)

Cellulosic 1.75 0.008e0.03 0.033
Biomass Based Diesel 1.28 1.28 1.28 1.63
Advanced 3.75 2.75 2e2.51 2.68
Renewable 18.15 16.55 15e15.52 15.93
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endogenously determine these volumes based on policy objectives.
This model, at the lower-level, contains six types of players: ethanol
producers, biodiesel producers, importers of ethanol (from Brazil
only) obligated parties (refiners), and blenders. These players act
over nine different markets: D4, D5, D6 RIN markets, ethanol and
biodiesel markets, gasoline blendstock and diesel blendstock mar-
kets, and gasoline and diesel markets. These players are put
together in an equilibrium model with no speculation, perfect
foresight, and perfectly inelastic demand for gasoline and diesel
where prices are endogenously determined. Decision variables
include quantities of fuel produced, imported, refined, blended,
along with RINs bought, sold, and banked. Fig. 2 shows the struc-
ture of this market and the complete KKT (Karush Kuhn Tucker)
formulation is given in Appendix A.

With this market at the lower-level, the upper-level conflicting
objectives are to 1) maximize GHG emissions reduction and 2)
minimize price RIN prices. GHG emission reductions are calculated
using the exact substitution of each biofuel as put forth by the EPA
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Fig. 2. The lower-level Biofue
while RIN prices are summed up (discounted) and averaged over
the time period considered in themodel. Note that with theMOPEC
structure, we have the flexibility of choosing from several objective
functions. For this application, we wanted to choose conflicting
objectives that policy makers often grapple with. For example,
other natural objective functions include consumer welfare, pro-
ducer profit, and economic efficiency. For our model, we chose to
look at the average RIN price as that is a tangible piece of infor-
mation that can be utilized to calculate all other measures such as
surplus, profit, and welfare. With the importance of RIN prices to
policy makers as emission reduction instruments, it also made
sense that they would want to make sure the prices stay low. We
could have also added the consumer fuel prices as objectives, but
then themodel would be optimizing overmany choices, and results
would be difficult to display. In a full implementation though,
policy makers and modelers should have to key in which parts of
the analysis are essential. Details of the mathematical formulation
of the objective functions are given in Appendix A and Fig. 3 shows
this structure.
5. Numerical results of the biofuel MOPEC

In this section, we present numerical results from the biofuels
market model described in Section 4. As mentioned before, solving
the MOPEC is not a trivial task. We employed a number of methods
to obtain our numerical results, and one in particular worked best.
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(Upper-Level Problem)

Equilibrium Market
(Policyfixed, y)
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Fig. 3. The MOPEC structure for setting the renewable fuel standard (RFS) in the US
biofuels market.
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The next subsection describes this method and the verification
performed to solve the MOPEC.

The goal of this numerical exercise is to show the useful output
from a MOPEC. While the MOPEC formulated here can output an
incredible amount of useful information that is common to
complementarity models, we focus here on the most relevant
output. In our example, we want to aid in setting climate policy,
specifically the RFS. Wewant to provide a number of alternatives to
set this policy and display output in a way convenient to policy
makers. Finally, we hope to provide insight on sensitivity of the
policy to changes in the system, as opposed to discrete scenario
results. We show that displaying the Pareto frontier of the MOPEC
can give additional insight not available from other models.

The model was run for years 2011e2020 (with two extra years
ignored in the results to mitigate end of horizon effects). Table 4
details the four different scenarios that were used to put our re-
sults in context. Two volume scenarios were proposed by Refs.
[28,46]. The other scenarios correspond to the recent proposal
released by the [17]. Since the EPA requested comment on a range
of biofuel volumes, this scenario includes three separate sub-
scenarios that reflect the upper and lower bounds, as well as
average, on how many gallons of biofuel must be consumed per
annum for each biofuel category. Again, details of data and pa-
rameters can be found in Ref. [9]. For the numerical implementa-
tion, we chose L ¼ 0.001 and Vm ¼ 0.01.

Figs. 4 and 5 below show the real insight of the MOPEC. First, we
see that the RFS is not a suitable climate market policy to reduce
GHG emissions from transportation fuel in the United States by
more than about 0.5% over the time period 2011e2020; annualized
Table 4
Volume scenarios used for comparison in this study in Billions of Gallons.

EPA low (Base Case) EPA mid EPA high Irwin Tyner

Biomass Based Diesel
2011 0.8 0.8 0.8 0.8 0.8
2012 1 1 1 1 1
2013 1.28 1.28 1.28 1.28 1.28
2014 1.28 1.28 1.28 1.28 1.28
2015 1.28 1.28 1.28 1.28 1.5
Advanced Fuel
2011 1.35 1.35 1.35 1.35 1.35
2012 2 2 2 2 2
2013 2.75 2.75 2.75 2.75 2.75
2014 2 2.255 2.51 2.75 2.05
2015 2 2.255 2.51 2.75 2.58
Renewable Fuel
2011 13.95 13.95 13.95 13.95 13.95
2012 15.2 15.2 15.2 15.2 15.2
2013 16.55 16.55 16.55 16.55 16.55
2014 15 15.26 15.52 16.55 15.85
2015 15 15.26 15.52 16.55 16.58
GHG savings are approximately 0.05%/year from 2011 to 2020. This
fact is realized once we look at the x-axis of both Figs. 4 and 5. The
most extreme GHG reduction scenario produces no more than
0.47% reduction over 2011e2020, which was the individual mini-
mum of the objective that maximizes GHG reduction. For scale, the
CAFE (Corporate Average Fuel Economy) standards for light duty
vehicles from 2017 to 2025 are projected to decrease annual
emissions by approximately 6% by 2020; annualized GHG savings
are approximately 2%/year. Benefits of CAFE standards also extend
well beyond 2020 as the vehicle fleet gradually turns over.3 The
approximate 0.47% reduction in GHG emissions was the maximum
feasible Pareto point achievable in our model, showing that even
under the best case scenario the impact of the RFS is limited. The
average RIN price in this case is around $1.50 for each of the RINs,
which is not prohibitive but the gasoline price goes above $6/
gallon, which is definitely not sustainable politically. Moreover,
there is no difference in prices for the different types of RINs (D4,
D5, and D6 are priced all the same), which shows that high emis-
sion reductions will lead to no discrimination between RIN cate-
gories, implying wasteful design of the RFS.

Second, given the constraints, the Pareto frontier shows that the
proposed EPA volumes have been have been picked in the least
sensitive range for RIN and fuel prices, i.e., the portions of the Pareto
frontier where RIN price changes least with an increase in GHG
emission reduction. The ranges from EPA Low to EPA High fall into a
flat part of the Pareto frontier, showing less sensitivity to rising RIN
pricebut largerGHGemissions reductions. The2014mandate shows
that the EPAhas chosen apolicywith ahighGHGemission reduction
but not much change in both transportation fuel and RIN prices.

Third, the MOPEC shows numerous policy alternatives for these
volume requirements, which result in different price structures and
policies. Note that there are multiple solutions, and the MOPEC can
help establish various combinations of the RFS that can yield
desired prices. For example, Irwin and EPA High focus on high
volume obligations for advanced biofuels as opposed to corn
ethanol, but such a policy will result in high D5 RIN prices and
lower D6 RIN prices. Such a graphic can also help policy makers
understand how the RFS can impact the RIN and energy markets.
Note that there could be multiple equilibria of different RFS man-
dates that result in the same Pareto point. Obtaining these equi-
libria (by using different starting values and desired specific
mandated volumes) can help in providing even more options for
policymakers.

Overall, our results show that the D4 RIN price is expected to be
themost stable of all three, and forms a cap for the other RIN prices.
Note that interpolating the Pareto frontier is not bound to give
feasible, Pareto optimal points. The gaps in the frontier show that
no feasible Pareto solution was found, indicating a discontinuous
Pareto frontier. This can have policy implications in that slight
changes in policy can very quickly lead to larger changes in the
market if the policy is close to an isolated Pareto optimal point. For
example, if we want a policy to reduce GHG emissions by around
0.43% but not have the RIN price go above $1, small changes in data
and conditions might force the market into the top left Pareto
optimal equilibrium (Fig. 4) with RIN prices as high as $1.50.

While the MOPEC was programmed to optimize on RIN price
and GHG emission reduction, we can still compare the fuel prices
using a similar graphic as shown in Fig. 5. We see that Diesel prices
remain relatively stable given various RFS volume obligations.
However, gasoline prices are affected much more by the RFS policy.
In many ways, this is counterintuitive because biodiesel offers a
much greater chance of emission reduction. We can see this by the
3 http://www.nhtsa.gov/staticfiles/rulemaking/pdf/cafe/FINAL_EIS_Summary.pdf.

http://www.nhtsa.gov/staticfiles/rulemaking/pdf/cafe/FINAL_EIS_Summary.pdf
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change in slope of the gasoline price curve at different values of
GHG emission reduction. At higher levels of GHG emission reduc-
tion, gasoline overtakes the diesel price, showing the pressure that
the RFS can place on refiners to blend ethanol once we pass a
certain threshold. Note that, again, gasoline prices are most sensi-
tive to changes in RFS policy once we move below or above the
current volume obligations being considered; i.e., the gradient of
the gasoline price curve is higher below the EPA Low policy and
above Irwin's suggested policy.

6. Concluding remarks

Because future energy needs will be fulfilled from a variety of
sources, we can expect many policy interventions in an effort to
promote sustainability and reduce GHG emissions. As researchers,
it is our responsibility to develop tools that can help make these
policy interventions and provide input from a number of different
angles. Bridging the gap between researchers and policy makers is
a role we also have to play. This paper has provided one such tool to
aid in decisions and also to make the conversation between re-
searchers and policy makers much easier.

The main conclusion is that we must be careful when devel-
oping policy to influence climate and sustainability issues as out-
comes can be different because of compromise and tradeoff.
Modeling can help us figure out what problems might develop
between various players and influence outcomes. Biofuels have an
important future in the United States, but taking advantage of them
is not easy, and the current RFS might not be the best instrument.
We have seen that even under very strict volume scenarios, the RFS
induces minimal GHG emission reductions with a danger that
gasoline prices might rise too high. It's nowonder that EPA released
the 2014 mandate in July 2015.

As shown in this paper, a MOPEC can help see policy in context
of its objectives, rather than the objectives in the context of policy
as has traditionally been done. The Pareto frontier gives us more
insights that we can otherwise not have from a scenario-based
analysis. While computational cost has been a big hurdle in solv-
ing MOPECs, recent advances in algorithmic development have
helped the analysis in this paper, and we believe that these tools
can be used in a wide variety of applications.

Future work includes incorporating uncertainty in MOPECs [40]
as well as adding state policies and detailed oil and diesel markets
and the ability to deal with integer variables [20,21]. We hope that
MOPECs get adopted in a wide variety of applications involving
energy systems including schematic display [38], data mining, and
sustainability [14].
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A. Appendix with mathematical formulation of MOPEC

Model Variables and Parameters [9]
qP;corneth;t
quantity of domestic corn ethanol produced (gal)

qP;oilsbbd;t
quantity of biodiesel produced (gal)

qP;sugareth;t
quantity of sugar ethanol imported (gal)

qBBOB;t quantity of blendstock for oxygenate blending (BOB) purchased (gal)

qBdesb;t quantity of unblended diesel purchased (gal)

qB;corneth;t
quantity of corn ethanol purchased (gal)

qBD6;t quantity of D6 RINs separated (RINs)

qB;oilsbbd;t
quantity of biodiesel purchased (gal)

qBD4;t quantity of D4 RINs separated (RINs)

qB;sugareth;t
quantity of sugar ethanol purchased (gal)

qBD5;t quantity of D5 RINs separated (RINs)

qB/E85
BOB;t

quantity of BOB purchased for use in E85 (gal)

qB;corn/E85
eth;t

quantity of corn-ethanol purchased for use in E85 (gal)

qB;sugar/E85
eth;t

quantity of imported ethanol purchased for use in E85 (gal)

qB/E10
BOB;t

quantity of BOB purchased for use in E10 (gal)

qB;corn/E10
eth;t

quantity of corn-ethanol purchased for use in E10 (gal)

qB;sugar/E10
eth;t

quantity of imported ethanol purchased for use in E10 (gal)

qBBOB;t quantity of blendstock for oxygenate blending (BOB) produced (gal)

qRdesb;t quantity of unblended diesel produced (gal)

BRD4;t quantity of D4 RINs banked in time period t (RINs)

BRD5;t quantity of D5 RINs banked in time period t (RINs)

BRD6;t quantity of D4 RINs banked in time period t (RINs)

pcorn
eth;t price for corn ethanol ($/gal)

p
sugar
eth;t

price for imported sugarcane ethanol from Brazil ($/gal)

piols
bbd;t

price for biodiesel fuel ($/gal)

pBOB;t price for gasoline blendstock for oxygenate blending (BOB) ($/gal)
pdesb;t price for unblended diesel ($/gal)
pD4;t price for D4 RINs ($/RIN)
pD5;t price for D5 RINs ($/RIN)
pD6;t price for D6 RINs ($/RIN)
pgas;t price for finished gasoline-like fuels (E10 and E85) ($/gal)
pdes;t price for finished diesel fuel ($/gal)
mbbd;t marginal cost for complying with the biomass-based diesel sub-mandate
madv;t marginal cost for complying with the advanced fuel sub-mandate
mr f ;t marginal cost for complying with the overall renewable fuel mandate

m
cap;oils
bbd;t

dual variable for biomass-based diesel capacity constraint

m
cap;corn
eth;t

dual variable for domestic corn-ethanol capacity constraint

m
cap;sugar
eth;t

dual variable for imported sugarcane ethanol capacity constraint

m
cap
corn;t

dual variable for limit on corn ethanol that can qualify under the RFS

mbankbbd;t
dual variable for constraint on the number of banked RINs that qualify for the biomass-based diesel sub-mandate

mbankadv;t
dual variable for constraint on the number of banked RINs that qualify for the advanced fuel sub-mandate

mbankr f ;t
dual variable for constraint on the number of banked RINs that qualify for the overall renewable fuel mandate

lD4;t dual variable for equality constraint for D4 RIN separation
lD5;t dual variable for equality constraint for D5 RIN separation
lD6;t dual variable for equality constraint for D6 RIN separation
lE10;t dual variable for the E10 blend wall constraint
lE85;t dual variable for the E85 blending limit

l
bal;sugar
eth;t

dual variable for the imported ethanol volume balance constraint

l
bal;corn
eth;t

dual variable for the corn ethanol volume balance constraint

lbalBOB;t
dual variable for the BOB volume balance constraint

EVeth equivalence value for ethanol (unitless)
EVbbd equivalence value for biodiesel (unitless)
PPbbd;t net policy intervention for the biodiesel producer ($/gal)

PPeth;t net policy intervention for the corn ethanol producer ($/gal)

PP;sugareth;t
net policy intervention for the importer sugarcane ethanol ($/gal)

(continued on next page)



(continued )

PBbbd;t net policy intervention for the blender to blend biodiesel ($/gal)

PBeth;t net policy intervention for the blender to blend ethanol ($/gal)

qdes;t perfectly inelastic consumer demand for diesel fuel (gallons)
qgas;t perfectly inelastic consumer demand for motor gasoline fuel; E10 & E85 (gallons)

qP;corneth;t
total production capacity for corn-ethanol in the United States (gallons)

qP;sugareth;t
total import capacity for sugarcane ethanol from Brazil (gallons)

qP;oilsbbd;t
total production capacity for biodiesel in the United States (gallons)

GHGcorn GHG emission reduction percentage for corn ethanol (20%)
GHGsug GHG emission reduction percentage for sugar cane ethanol (50%)
GHGbiod GHG emission reduction percentage for biodiesel (50%)
GHGE85 GHG emission reduction factor for E85 (78.2%)
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Upper-Level Objective Functions
maxf1 ¼
X
t

0BBBBBBB@

GHGcornqB;corn/E10
eth;t þ GHGsugqB;sugar/E10

eth;t þ GHGE85
�
0:5qB;sugar/E85

eth;t þ 0:2qB;corn/E85
eth;t

�
qgas;t

þ
GHGbiodqB;oilsbbd;t

qdes;t

1CCCCCCCA

minf2 ¼
P
t
bt
�
pD4;t þ pD6;t þ pD6;t

�
P

t

Biodiesel Producer KKT Conditions

0 � qP;oilsbbd;t⊥� pbbd;t þMCbbd;t
�
qP;oilsbbd;t

�
� PPbbd;t þ m

cap;oils
bbd;t � 0

Domestic Ethanol Producer KKT Conditions

0 � qP;corneth;t ⊥� pcorn
eth;t þMCcorn

eth;t

�
qP;corneth;t

�
� PPeth;t þ m

cap;corn
eth;t � 0

Ethanol Importer KKT Conditions

0 � qP;sugareth;t ⊥� p
sugar
eth;t þMCsugar

eth;t

�
qP;sugareth;t

�
� PP;sugareth;t þ m

cap;sugar
eth;t

� 0

Refiner KKT Conditions

0 � qRBOB;t⊥MCBOB;t
�
qRBOB;t

�
� pBOB;t � 0

0 � qRdesb;t⊥MCdesb;t
�
qRdesb;t

�
� pdesb;t � 0

0 � qRD4;t⊥pD4;t � mbbd;t � madv;t � mr f ;t � 0

0 � qRD5;t⊥pD5;t � madv;t � mr f ;t � 0

0 � qRD6;t⊥pD5;t � mr f ;t � 0

0 � BRD4;t⊥m
bank
bbd;t þ mbankadv;t þ mbankr f ;t þ mbbd;t � mbbd;tþ1

þmadv;t � madv;tþ1 þ mr f ;t � mr f ;tþ1 � 0

0 � BRD5;t⊥m
bank
adv;t þ mbankr f ;t þ madv;t � madv;tþ1 þ mr f ;t � mr f ;tþ1 � 0

0 � BRD6;t⊥m
bank
r f ;t þ mr f ;t � mr f ;tþ1 � 0

Blender KKT Conditions
0� qBD4;t⊥lD4;t �pD4;t �0
0� qBD5;t⊥lD5;t �pD5;t �0
0� qBD6;t⊥lD6;t �pD6;t �0

0� qBBOB;t⊥pBOB;t �lbalBOB;t �pgas;t �0

0� qB/E10
BOB;t ⊥�0:10lE10;t þlbalBOB;t �0

0� qB/E85
BOB;t ⊥�0:74lE185;t þlbalBOB;t �0

0� qB;corneth;t ⊥mcapcorn;t �l
bal;corn
eth;t �PBeth;t �pgas;t þpcorn

eth;t �EVethlD6;t �0

0� qB/E10;corn
eth;t ⊥lbal;corneth;t �lE10;tð0:10�1Þ�0

0� qB/E85;corn
eth;t ⊥lbal;corneth;t �lE85;tð0:74�1Þ�0

0� qB;sugareth;t ⊥psugar
eth;t �l

bal;sugar
eth;t �pgas;t �PBeth;t �EVethlD5;t �0

0� qB/E10;sugar
eth;t ⊥lbal;sugareth;t �lE10;tð0:10�1Þ�0

0� qB/E85;sugar
eth;t ⊥lbal;sugareth;t �lE85;tð0:74�1Þ�0

0� qBdesb;t⊥pdesb;t �pdes;t �0

0� qB;oilsbbd;t⊥pbbd;t �PB;oilsbbd;t �pdes;t �EVbbdlD4;t �0

Market Clearing Conditions

qRD4;t ¼ qBD4;t
�
pD4;t

�
qRD5;t ¼ qBD5;t

�
pD5;t

�
qRD6;t ¼ qBD6;t

�
pD6;t

�
qB;corneth;t ¼ qP;corneth;t

�
pcorn
eth;t

�
qB;sugareth;t ¼ qP;sugareth;t

�
p
sugar
eth;t

�
qB;oilsbbd;t ¼ qB;oilsbbd;t

�
pbbd;t

�
qBBOB;t ¼ qRBOB;t

�
pBOB;t

�
qBdesb;t ¼ qRdesb;t

�
pdesb;t

�
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qBdesb;t þ qB;oilsbbd;t � qdes;t ¼ 0
�
pdes;t

�
�
qB/E10
BOB;t þ qB;sugar/E10

eth;t þ qB;corn/E10
eth;t

�
/þ r

�
qB/E85
BOB;t

þ qB;corn/E85
eth;t þ qB;sugar/E85

eth;t

�
� qgas;t

¼ 0
�
pgas;t

�

B. Appendix with algorithm steps for solving MOPEC

Start

1) Obtain individual objective function minima for the MPEC [42].
The MPEC method must utilize a quasi-newton method.

2) Normalize all objective functions to have minimum (point of
Utopia) at zero andmaximumvalues in the objective space to be
1.

3) Fix n e 2 objective functions to a fixed value in [0, 1].
4) For each pair, select Vm, the spacing for the generated Pareto

points.
5) Initiate the first objective optimization problem with the start

point minimum of f1, t ¼ 1, b ¼ 0. Use the MPEC solver by Ref.
[42] to solve this problem.

6) At the end of the optimization, if t¼ 0, b¼ 1, thenmove to step 7
e an approximation to the Pareto set is generated.

7) If not, use t þ Vm and b þ Vm as starting points for the next
optimization and return to step 5.

8) If the approximation of the Pareto set needs to bemore accurate,
use smaller Vm for generation of more Pareto points and return
to step 4. Otherwise proceed to step 8.

9) For n > 2, use different values in [0, 1] to fix objective functions
values to obtain results for multiple objectives. Then return to
step 2. If all combinations of objectives have been fixed, stop.
Use the Pareto filter [42] to remove Pareto dominated points
from the generated Pareto set.

Stop.
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