
Struct Multidisc Optim (2012) 46:839–852
DOI 10.1007/s00158-012-0797-1

RESEARCH PAPER

On improving normal boundary intersection method for
generation of Pareto frontier

S. Siddiqui · S. Azarm · S. A. Gabriel

Received: 17 November 2011 / Revised: 8 March 2012 / Accepted: 29 March 2012 / Published online: 8 May 2012
c© Springer-Verlag 2012

Abstract Gradient-based methods, including Normal
Boundary Intersection (NBI), for solving multi-objective
optimization problems require solving at least one optimiza-
tion problem for each solution point. These methods can be
computationally expensive with an increase in the number
of variables and/or constraints of the optimization problem.
This paper provides a modification to the original NBI algo-
rithm so that continuous Pareto frontiers are obtained “in
one go,” i.e., by solving only a single optimization prob-
lem. Discontinuous Pareto frontiers require solving a sig-
nificantly fewer number of optimization problems than the
original NBI algorithm. In the proposed method, the opti-
mization problem is solved using a quasi-Newton method
whose history of iterates is used to obtain points on the
Pareto frontier. The proposed and the original NBI methods
have been applied to a collection of 16 test problems, includ-
ing a welded beam design and a heat exchanger design
problem. The results show that the proposed approach
significantly reduces the number of function calls when
compared to the original NBI algorithm.

S. Siddiqui (B)
ICF International, 9300 Lee Highway, Fairfax, VA 22031, USA
e-mail: ssiddiqui@icfi.com

S. Azarm
Department of Mechanical Engineering, University of Maryland,
College Park, MD 20742, USA

S. A. Gabriel
Department of Civil and Environmental Engineering, University of
Maryland, College Park, MD 20742, USA

Keywords Normal Boundary Intersection (NBI) ·
Multi-objective optimization · Continuous nonlinear
optimization · Pareto solutions · Quasi-Newton methods

1 Introduction

Among the most used gradient-based methods for solving
multi-objective optimization problems (Steur 1985; Collette
and Siarry 2004) are the weighted method and the constraint
method (Cohon 2004). However, both these methods often
do not produce an even distribution of Pareto points (Das
and Dennis 1997) or at times fail to give an accurate repre-
sentation of the Pareto frontier (Jia and Ierapetritou 2007).
The Normal Boundary Intersection (NBI) (Das and Dennis
1998) and its improvements, the Normal Constraint (NC)
(Messac et al. 2003) method, are alternatives not affected
by these problems and do not sacrifice computational time
to better obtain the Pareto frontier. The NBI and NC meth-
ods have been improved to solve problems that have a
non-convex Pareto frontier (Messac and Mattson 2004).

In this paper, an approach for multi-objective optimiza-
tion (Marler and Arora 2004) for continuous nonlinear
programs is developed by modifying the original NBI algo-
rithm (Das and Dennis 1998). The goal is to obtain the
Pareto frontier at a much lower computational cost (when
compared to the original NBI algorithm) while sacrificing
little for accuracy and have a methodology to increase accu-
racy if needed. The proposed modification will be based on
the original NBI algorithm and will modify it so that it is
more suitable for engineering design and other nonlinear
multi-objective optimization problems.

This paper’s approach (hereafter referred to as the
modif ied NBI method) has been tested and verified with 16
optimization problem examples. A comprehensive review
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of the literature was conducted and the main distinctions
between the proposed modified NBI method and previous
works are as follows:

(i) Traditional gradient-based methods for multi-objective
optimization problems (e.g., weighted method, con-
straint method, NBI, NC) involve solving multiple
optimization problems to obtain the Pareto solution
points (Cohon 2004), i.e., one optimization problem
for obtaining one Pareto point. Not only can this
be computationally expensive and tedious, but also
lead to repetition of Pareto points so that a good
description of the Pareto frontier may not be obtained
(Das and Dennis 1998). While NBI and NC were
designed to obtain a distinct, evenly spread Pareto
frontier (Messac et al. 2003; Messac and Mattson
2004), the methods still involve solving one opti-
mization problem per Pareto point generated. Alterna-
tive gradient-based approaches exist which obtain the
Pareto frontier without explicitly solving optimization
problems. For example, Rakowska et al. (1993) pro-
vided an active set algorithm which used homotopy
curve-tracking techniques and obtain the Pareto fron-
tier “in one go.” The modified NBI method provides
a gradient-based algorithm which, in the case of con-
tinuous Pareto frontiers for bi-objective optimization
problems, obtains the Pareto frontier by solving one
optimization problem. For discontinuous Pareto fron-
tiers, the number of optimization problems required is
equal to the number of discontinuities (from numeri-
cal evidence of the test problems considered).

(ii) While population-based methods such as genetic
algorithms (Deb et al. 2002; Goel et al. 2007; Li
et al. 2009) and others (Venter and Haftka 2010) can
obtain an estimate of the entire Pareto frontier in an
“all-at-once” manner, they involve the pre-selection of
numerous parameters for those algorithms, which can
greatly influence the solution obtained (Isaacs et al.
2008). For example, a genetic algorithm requires the
selection of parameters such as the size of population,
crossover type and probability, mutation probability,
number of generations, etc. Also, due to the stochastic
nature of population-based methods, the same solu-
tion is often not reproduced, even with the same
settings of parameters. Hence, these algorithms are
often run many times to obtain a trusted solution set.
The method in this paper involves the selection of
only a single parameter, which is used to influence
the number of Pareto points generated. Moreover, the
same results are reproduced every time with the same
value of the parameter so the algorithm does not need
to be run many times.

(iii) The proposed approach preserves the computational
tractability (numerical evidence) of the problem with
respect to the number of variables and number of
constraints. By contrast, the computational effort for
the original NBI algorithm (Das and Dennis 1998)
increases at a greater rate with an increase in num-
ber of variables, constraints, and number of Pareto
points generated for the test problems considered in
this paper. It has to be pointed out that while the
modified NBI method can be used to solve problems
with greater than two objectives, it increases compu-
tational time as it would in the case of the original
NBI algorithm.

(iv) Gradient-based methods often have trouble generat-
ing a Pareto frontier that is nonlinear and/or dis-
continuous (Cohon 2004; Das and Dennis 1998).
Modifications of NBI (e.g., Messac and Mattson
2004; Mueller-Gritschneider et al. 2009) have been
developed to handle concave Pareto frontiers (for
minimization) and have been shown to work for non-
linear (non-convex) Pareto frontiers as well. This
paper provides numerical evidence of generating such
Pareto frontiers with reasonable computational effort.

In the following, first, a description of the NBI method
will be provided in detail along with the terminology to be
used in Section 2. Then, the proposed modification will be
described so that NBI can be more efficient in Sections 3
and 4. Simple examples are presented to show the nuance
of the modification in Section 5. Finally, additional numer-
ical examples in Section 5 and engineering examples in
Sections 6 and 7 are presented to demonstrate a wide range
of applications of the approach.

2 Background and terminology

A multi-objective optimization problem in which at least
two or more objectives are conflicting is given by

min
x∈C

F(x) = [
f1 (x) , . . . , fn (x)

]T
, n ≥ 2 (1)

where the superscript T represents the transpose function
and

C = {
x ∈ �N : h (x) = 0, g (x) ≤ 0, a ≤ x ≤ b

}
,

F (x) : �N → �n, h (x) : �N → �ne, g (x) : �N → �ni

(2)

Assuming that at least two objective functions are
conflicting in (2) then no single x∗ would generally min-
imize every fi simultaneously. A concept of optimality
which is useful in the multi-objective framework is that
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of Pareto optimality as defined below, see, e.g., Das and
Dennis (1998).

Dominance and Pareto Optimality The vector F
(
x̂
)

is said to dominate another vector F (x̄), if and only if
fi

(
x̂
) ≤ fi (x̄) for all i = 1, . . ., n and f j

(
x̂
)

< f j (x̄)

for at least one j . A point x∗ ∈ C is said to be Pareto opti-
mal or an efficient point for (1) if and only if there does not
exist x ∈ C satisfying F(x) < F(x∗). The vector F(x∗)
is then called a non-dominated or non-inferior point, and
specifically a Pareto point. The set of all Pareto points is
referred to as the Pareto frontier.

Utopia Point The shadow minimum or utopia point is
defined (Das and Dennis 1998) as the vector F∗ of indi-
vidual global minima of the objective functions fi .

The utopia point, hence, can only be achieved if there
exists an x∗ that is a minimizer for all the individual objec-
tive functions. The existence of such an x∗ is very rare, and
almost all engineering optimization applications have a set
of Pareto points. Note that since both the previous and next
definition involve a global as opposed to local minimum,
their computation requires the use of a global minimizing
algorithm. The examples in this paper use a multi-start gra-
dient based solver in MATLAB (MATLAB 2008), which
is assumed to be a global minimizer. Also, without loss
of generality, it will be assumed from this point on that
F∗ = 0.

CHIM The Convex Hull of Individual Minima (CHIM) is
the set of all convex combinations of the individual global
minima of the objective functions. Specifically, Let x∗

i be
the global minimizer of fi (x), i = 1, . . ., n over x ∈ C . Let
F∗

i = F(x∗
i ), i = 1, . . ., n. Let � be an n × n matrix (some-

times known as the payof f matrix) whose i th column is F∗
i .

Then the set of points in �n that are convex combinations
of F∗

i , i.e.,
{

�β : β ∈ �n,

n∑

i=1

βi = 1, βi ≥ 0

}

(3)

is referred to as CHIM.
The set of feasible vectors in objective space (feasible

region of the objective space), {F(x) : x ∈ C} is denoted by
�, which is a subset of the objective space whose bound-
ary is defined by ∂�. Let the set of Pareto points, the
Pareto frontier, be denoted by �. Let CHIM∞ be the affine
subspace of lowest dimension that contains CHIM, i.e.,

C H I M∞ =
{
�β : β ∈ �n,

n∑

i=1
βi = 1

}
. Let C H I M+ =

� ∩ C H I M∞ or, geometrically, let CHIM+ be an exten-
sion of the CHIM to ∂�, which informally can be described
as the extension of the boundary of the CHIM simplex to
∂�. In two dimensions C H I M+ = C H I M . Figure 1 dis-
plays this information geometrically for a problem with two

0 

A

f1(x)

f2(x) 

B

C 

Fig. 1 Description of CHIM+ in the objective space

objective functions. Here, the grey region is �, its boundary
∂�, A is F∗

1 , B is F∗
2 , the line segments ACB is the Pareto

frontier �, and the dashed line segment AB is the CHIM+
(and CHIM).

The basic idea behind the original NBI algorithm (Das
and Dennis 1998) is to find the Pareto frontier using CHIM+
as a starting point. For different values of β, quasi-normal
vectors (as shown in Fig. 1 by arrows) from CHIM+ in the
direction of the utopia point are generated. The vectors need
not be exactly normal to CHIM, but just need to move away
from CHIM+ and point towards the utopia point, which is
the origin for normalized, minimization problems. Hence,
the term quasi-normal is used (Das and Dennis 1998). In
particular, the intersection of these vectors with ∂� will
give the Pareto frontier. The optimization problem solved
to generate the Pareto frontier is

max
x∈C, t∈ �+

t

s.t.
�β + t n̂ = F(x)

h(x) = 0, g(x) ≤ 0, a ≤ x ≤ b

(4)

Here, n̂ is the quasi-normal vector emanating from the
CHIM+, and t is a real, positive variable. The first con-
straint in (4) is based on decomposing F(x) into orthogonal
vector components. The value of β decides which particular
normal vector is being directed towards the Pareto frontier.
Moreover, the normal vector n̂ does not need to be exact,
and in most cases taking n̂ = −�e is good enough, as this
ensures quasi-normal vectors in the direction of the origin
(here, e is the vector of all 1’s). The idea is to solve (4) for
various values of β to find several points on the boundary
of �.

Several issues need to be considered when using NBI.
First, � might not be a convex set, and instead take on com-
plicated shapes that would hinder the method from finding
the Pareto frontier. Second, NBI is designed to find the
boundary of � close to the point of utopia and not the entire
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Pareto frontier. In practice, NBI might give points that are
on the boundary of �, but are not Pareto optimal (Das and
Dennis 1998).

Numerous improvements have been made to fix these
problems. One major improvement is the Normal Constraint
method (Messac et al. 2003) which provides a way to elim-
inate the non-Pareto points found by the NBI method. Fur-
ther, some modifications to the Normal Constraint method
have been made to deal with a non-convex � (Messac and
Mattson 2004). Moreover, there is a way to generate Pareto
points at the edges of the CHIM+ in multiple dimensions
(Mueller-Gritschneider et al. 2009).

Finding the CHIM+ and then solving (4) using different
values of β presents a problem that can get computationally
expensive. Two ways proposed before (Das 1999; Das and
Dennis 1998) to “smartly” parameterize β using a special
ordering. Since β is a vector of length equal to the number of
objective functions, the ordering involves moving along the
first element while keeping others fixed and then the second
element and so on (Das and Dennis 1998). This ordering can
also be used to solve several problems in parallel, to speed
up computation. This essentially entails obtaining starting
points that would be close to the next solution and then solv-
ing several problems at the same time. For more detailed
information, refer to (Das and Dennis 1998).

3 Modified NBI method for solving a bi-objective
optimization problem

The first goal of the modified NBI method is to obtain
the Pareto frontier by solving a single optimization prob-
lem for bi-objective optimization problems with continuous
Pareto frontiers. This will be done in two steps. The first
step modifies the CHIM+ used in the optimization problem
from the one used in the original NBI algorithm. The sec-
ond step controls the history of iterates of the optimization
problem that is solved with this modified CHIM+. To avoid
confusion, the term iterates will be used to denote iterations
of a single optimization problem and not the iterates of an
entire algorithm (original NBI algorithm or modified NBI
method).

From this paragraph on, our contribution to the
modification is discussed. For this section, and the remain-
der of the modified NBI method, the objective functions
need to be normalized so that all objective functions have
a minimum at zero and values at the CHIM+ corners to be
equal to 1. If the objective function is unbounded or does
not attain its maximum, a user-defined upper-bound can be
imposed. The normalization is done by dividing each objec-
tive function by its maximum function value when the other
objective functions are at their individual minimum. An
example of this normalization is presented in the numerical

results (Section 5). The first step in modifying NBI is using
a modified CHIM+ as also considered elsewhere (Mueller-
Gritschneider et al. 2009). Equation (5) and Fig. 2 show this
change. The CHIMMOD is at the base, given as a dashed line.
Moreover, the problem is changed to find tMIN as opposed
to tMAX for the original NBI algorithm:

C H I MMOD =
{(

1
0

)
β : β ∈ �+, 0 ≤ β ≤ 1

}
(5)

Hence, the optimization problem to be solved after the
modification for a bi-objective optimization problem is

min
x∈C,t∈�+,β∈�+

t

s.t.(
1
0

)
β + t

(
0
1

)
= F(x)

h(x) = 0, g(x) ≤ 0, β ≥ 0, a ≤ x ≤ b

(6)

Note the change in the first constraint. The term

(
1
0

)
β

has replaced the term �β in (4) because we have replaced

CHIM+ with CHIMMOD. Moreover, the vector

(
0
1

)
is

normal to the CHIMMOD and hence is multiplied by t . Com-
pared to the CHIM+ in the original NBI method where the
goal was to obtain an even distribution of the Pareto frontier,
the goal in the modified NBI method is to use the history of
iterates from problem in (6) to obtain the Pareto frontier.
Hence, β is included as a decision variable in (6) whereas
it was a fixed parameter in (4). Note that (6) is also solved
using a gradient-based method.

The next step is to control the history of iterates when
solving (6) to obtain the Pareto frontier. An assumption
is made that a quasi-Newton method is used to solve
(6). Recall the Newton method (Bazaraa et al. 1993) for
finding a local minimum for a single-objective optimization

t1 

β1 

tm 

βm 

tMIN = 0

β MIN

CHIMMOD 
 

f2 

f1

Fig. 2 Modified NBI method, moving along the Pareto frontier from
the outside
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problem. To find where the first derivative of an objective
function is zero (Schoenberg 2001):

f ′(x) = f ′(xm) + f ′′(xm)(x − xm) = 0

x = xm − [
f ′′(xm)

]−1
f ′(xm)

(7)

where the subscript m represents successive better approxi-
mations of the solution x∗, i.e., xm → x∗. Under favorable
conditions (Bazaraa et al. 1993) convergence is obtained
iteratively, where

xm+1 = xm − δm (8)

δm = [
f ′′(xm)

]−1
f ′(xm) = H−1

m gm (9)

Since this is a derivation from the quadratic Taylor series of
the objective function, approximating the Hessian Hm can
prove troublesome. Hence, another step is added (some-
times referred to as a Newton step) called the line search
method in some cases:

xm+1 = xm − αmδm (10)

The αm above in (10) is called the steplength, and δm is the
direction. However, since (6) is being optimized over three
sets of variables, one can rewrite (10) as follows:

⎛

⎝
x
t
β

⎞

⎠

m+1

=
⎛

⎝
x
t
β

⎞

⎠

m

− αm

⎛

⎝
δx

δt

δβ

⎞

⎠

m

(11)

The driving force behind this is to find tMIN as in Fig. 2, but
along the way collect the history of iterations as they will
contain important information about the Pareto set. Remem-
ber that the original NBI algorithm, (4), chose parameters β.
Here, by varying the steplength attached to β, different val-
ues of β can be restricted in the history of iterates which
can be used to estimate the Pareto set. In other words, (11)
is rewritten as (12) to emphasize different steplengths.

⎛

⎝
x
t
β

⎞

⎠

m+1

=
⎛

⎝
x
t
β

⎞

⎠

m

−
⎛

⎝
αmδx

αmδt

αmδβ

⎞

⎠

m

(12)

The goal of this modification is to use the history of succes-
sive iterates of a single optimization problem and numer-
ically show that these successive iterates move along the
Pareto frontier. To generate a minimum number of points
on the Pareto frontier, limiting the magnitude but keeping

the same direction of

⎛

⎝
αmδx

αmδt

αmδβ

⎞

⎠

m

will enable the succes-

sive approximations of x∗ points to have a certain maximum

distance in between them. Note that the distance between
two successive points on the generated Pareto frontier is
given by the size of αmδβ , which is the amount the vari-
able β “steps” towards the solution. Since it is assumed that
all objective functions have been normalized, the magnitude
of αmδβ can be controlled to generate a desired number of
Pareto points. The maximum desired steplength for β at
each iteration will be denoted by Vm . For example, if 11
points need to be generated (10 differences) along the Pareto
frontier, αmδβ can be set to be 0.1 (or 1/10), and if 21 points
are needed (20 differences) then αmδβ is set to be 0.05 (or
1/20). In general, to generate p points, set Vm = 1/(p − 1).
Even though Vm is a predetermined constant and is set to be
the same for each iteration, the subscript m is included to
denote that it is used in each iteration. The new formulation
for updating steplength is:
⎛

⎝
x
t
β

⎞

⎠

m+1

=
⎛

⎝
x
t
β

⎞

⎠

m

− Vm

αmδβ

⎛

⎝
αmδx

αmδt

αmδβ

⎞

⎠

m

(13)

and Vm will be the quantity varied by the user to help obtain
a pre-specified number of Pareto points.

The smaller Vm , the more Pareto points will be generated.
Vm needs to be chosen small enough to cover various values
of β, as shown in Fig. 3. The remainder of the quasi-Newton
method is used in the traditional way (any quasi-Newton
method, e.g., BFGS, DFP, Broyden (Bazaraa et al. 1993)
will work) to estimate the Hessian matrix and proceed.
Realize that one only needs to solve a single optimization
problem to obtain the Pareto frontier shown in Fig. 3. A
quick convergence without limiting steplength using Vm

means fewer Pareto points are generated. As shown in
Fig. 3, square points are obtained by choosing a small Vm

f1

f2 

t1 

β β β β β 1 

tm-1 

 m-1 

tMIN = 0 

 MIN 

Points Generated Without 
Modifying Steplength 

Points Generated with Modified 
Steplength 

 m 

tm 

2 

t2 

Vm Vm 

Fig. 3 Pareto points with no restriction on Vm (circle) and small Vm
(square)
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f1

f2 

t1 

 1 

tMIN = 0 

ββ MIN 

Vm 

Fig. 4 Choosing the next starting point for an optimization if the
solver stops at a point other than t = 0

and thus more Pareto points are generated using the his-
tory of iterates of the optimization. Circle points denote not
limiting Vm , i.e., an application of a quasi-Newton method
without limiting steplength. The starting point will be F∗

2 ,
the point at which f2 is minimized, i.e., when t = 1 and
β = 0. By formulation in (6), the objective function t will
be minimized generating Pareto points until tMIN = 0 will
be reached.

One drawback of the proposed approach is that, if Vm is
not chosen to be small, it might give an inaccurate Pareto
set due to the fact that each point is not generated by an
individual optimization problem but by successive iterates
of a quasi-Newton method. Numerical evidence, though,
suggests that in the numerical examples considered in this
paper the Pareto frontier can be generated with reasonable
accuracy by reducing Vm . If computation time is not a limi-
tation, a range of values of Vm can be chosen and the method
applied for each value. In any case, all the points found
by the proposed NBI modification method will be feasible,
which can be confirmed by the solver. Moreover, a Pareto
filter, exactly as described elsewhere (Messac et al. 2003)
is also applied. This filter ensures the output only displays
points that are not Pareto dominated by any other point.

Another issue is that, as with all quasi-Newton methods,
discontinuities of the Pareto frontier may cause a suboptimal
solution to be obtained, as shown in Fig. 4. The advantage of
the modified NBI method is that it is simple to tell when an
optimal value of t has been reached. Simply put, the glob-
ally optimal value of t in (6), when CHIM+ exists and is
finite, will always be 0. Hence, if this value is not reached,
the algorithm chooses a starting point Vm distance from the
current point away from the starting point as displayed in
Fig. 4. If this “jump” is not large enough to counter the dis-
continuity then the next iteration chooses a starting point
of 2Vm steps ahead, and so on. This will continue until the
optimal value of t = 0 is reached.

It is important to note that in cases where the optimization
problem stops due to a discontinuity, a new optimization
problem with a new starting point (the new point after
the Vm jump) is required to generate the remaining Pareto
frontier. Hence, in the cases of Pareto frontiers with dis-
continuities, more than one optimization problem will be
required to obtain the Pareto frontier but no more than
the number of discontinuities. Table 1 gives a comparison
between NBI and the modified NBI method for generat-
ing Q points on the Pareto frontier. Note that, as given
by Table 1, for problems with continuous Pareto frontiers
D = 0, one optimization problem is required, which implies
that in continuous cases the modified NBI method will com-
putationally perform better than the original NBI algorithm.
The number of optimization problems required to solve for a
general case is D+1, as each discontinuity can at maximum
require the solution of one more optimization problem. The
cases where it is not expected to computationally perform
better than the original NBI algorithm are cases with small
I (number of iterates for solving one optimization problem)
and large D (number of discontinuities in the Pareto fron-
tier). Note that a smaller I indicates a simpler problem.
For the modified NBI method, the maximum number of

Table 1 Comparison between
NBI and Modified NBI to
Generate Q Pareto Points for a
Bi-objective Problem with N
Variables, G Constraints, and D
Discontinuities along Pareto
Frontier

Comparison NBI Modified NBI

Number of optimization problems Q optimization problems (D + 1) optimization problems

with N variables with N + 2 variables

and G constraints and G + 1 constraints

Computational speed Slow Quicker

Accuracy Accurate Pareto set Approximate Pareto set

Parameters to preset Have to choose β Have to choose Vm

Maximum number of function Q × I × M (D + 1) × (max(Q, I )) ×(M + 3)

calls given I iterations with

M maximum function calls

for each iteration
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function calls for each iteration goes up by three because
two new variables and one new constraint is added to the
optimization problem being solved (compare (4) with (6)).
The numerical examples have been selected to have a wide
variety of problems to see in which cases the modified
NBI algorithm performed better. Another aspect to keep
in mind is that Table 1 displays the maximum number of
function calls expected, which can be very different than
the actual number of function calls observed for a particular
problem.

4 Modified NBI method for solving multi-objective
optimization problems

The material up until now focused on solving bi-objective
optimization problems. However, the modified NBI method
can be extended to solving problems with more than two
objectives, though it does not preserve the computational
tractability as the number of objective functions increases.
Consider (1) where there are n objectives.

The first step is to find the CHIM+, and normalize all
objective functions. Pick n – 2 of the objectives whose
objective function value are fixed in a uniform partition of
[0, 1]. Then, fixing values of the n – 2 objective func-
tions for a specific value in the uniform partition of [0,
1], solve the resulting bi-objective optimization problem.
After obtaining a portion of the Pareto frontier, fix to a
different set of values within the partition [0, 1]. Hence,
problems in which the number of objective functions is
greater than two require solving multiple optimization prob-
lems, as in the original NBI algorithm. An enumeration on
which values to fix is similar to the enumeration provided
in (Das and Dennis 1998). A numerical problem with three
objective functions is solved in Section 5.2 to display this
methodology.

4.1 Algorithm steps

Start
1) Normalize all objective functions to have minimum

(point of Utopia) at zero and values at the CHIM edges,
i.e., maximum values along the Pareto frontier in the
objective space to be 1.

2) Fix n – 2 objective functions to a fixed value in [0, 1].
3) For each pair, select Vm , the spacing for the generated

Pareto points.
4) Initiate the first objective optimization problem with the

start point minimum of f1, t = 1, β = 0.
5) At the end of the optimization, if t = 0, β = 1, then

move to step 7 – an approximation to the Pareto set is
generated.

6) If not, use t + Vm and β + Vm as starting points for the
next optimization and return to step 5.

7) If the approximation of the Pareto set needs to be more
accurate, use smaller Vm for generation of more Pareto
points and return to step 4. Otherwise proceed to step 8.

8) For n > 2, use different values in [0,1] as in the orig-
inal NBI algorithm to fix objective functions values
to obtain results for multiple objectives. Then return
to step 2. If all combinations of objectives have been
fixed, stop. Use the Pareto filter described in (Messac
et al. 2003) to remove Pareto dominated points from the
generated Pareto set.

9) (Optional) For more accurate Pareto set generation,
choose a range of Vm and repeat steps 3–8 for all val-
ues of Vm in the range. Take the union of all Pareto sets
generated after step 8 over different values of Vm and
apply the Pareto filter described in (Messac et al. 2003)
on this union.

Stop

5 Numerical examples

This section provides numerical examples to support the
modified NBI method. First, a step-by-step application
to a linear multi-objective optimization problem will be
presented. Then, an application to a three-objective opti-
mization problem will be presented to show the extension
to multiple objectives. The section will end with a series
of numerical tests from the literature which showcase the
versatility and speed of the method. Note that original NBI
algorithm is used to compare the computational efficiency
of all examples. For the CPT 2 example in Section 5.3
and the heat exchanger design in Section 7, no points were
generated by the original NBI algorithm. For all examples
other than the simple example in Section 5.1, few points
were generated with many not on the Pareto frontier for
the original NBI algorithm. The authors understand that
there might be other problem specific techniques that could
have made this application of the original NBI algorithm
better, but the goal of this paper is to see how the origi-
nal NBI algorithm could be improved. Since the focus is
on the modified NBI method, the function calls for the
original NBI algorithm are still reported where the original
NBI method failed to generate points on the Pareto fron-
tier. All single-objective optimization problems in this paper
are solved using the fmincon solver in MATLAB (2008)
with the active-set option. One function call is defined as
any instance where the solver evaluates an objective or a
constraint function.
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5.1 Multi-objective linear program simple example
(Ex 1 LP)

To demonstrate the modified NBI method, step-by-step, the
following linear programming example (Example 1, or Ex
1 LP) is used:

min f1 = −5x1 + 2x2, f2 = x1 − 4x2

s.t.
g1(x) = −x1 + x2 ≤ 3
g2(x) = x1 ≤ 6
g3(x) = x1 + x2 ≤ 8
g4(x) = x2 ≤ 4
g5(x) = −x1 ≤ 0
g6(x) = −x2 ≤ 0

(14)

The first step in the algorithm is to normalize the objective
functions and find the CHIM+. Realize that F∗

1 = [−30 6]T

and F∗
2 = [3 − 15]T . The line joining these two points

in the objective space is the CHIM+. To normalize f1

and f2, replace the objective functions with f normalized
1 =

f1−(−30)
3−(−30)

= f1+30
33 and f normalized

2 = f2−(−15)
6−(−15)

= f2+15
21 .

These functions now have a minimum of 0 and maximum of
1. Next, for this example, the goal is to generate 11 points
(11 was chosen for ease of notation. It is completely arbi-
trary). For all the methods in Table 2, eleven points were
aimed to be generated on the Pareto frontier. Hence, select
Vm = 0.1. The starting point of the algorithm is chosen
to be the values of x which minimize f1, i.e., those that
correspond to t = 1, β = 0. Then, solve the following
optimization problem

min
x∈�2,t∈�+,β∈�+

t

s.t.
g1(x) = −x1 + x2 ≤ 3
g2(x) = x1 ≤ 6
g3(x) = x1 + x2 ≤ 8
g4(x) = x2 ≤ 4
g5(x) = −x1 ≤ 0
g6(x) = −x2 ≤ 0

(
1
0

)
β + t

(
0
1

)
=

⎛

⎜
⎝

f1(x) + 30

33
f2(x) + 15

21

⎞

⎟
⎠

Starting Point: t = 1, β = 0, x =
[

6
0

]

(15)
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Fig. 5 Solution to Ex1 LP

The history of iterates for solving (15) are the resulting
points on the Pareto frontier. The results comparing the NBI
methods are shown in Fig. 5. Table 2 displays the results.
Four different methods were used to solve this example,
which are shown in Table 2. The results show that both the
modified NBI method and the original NBI algorithm are
able to generate points on the Pareto frontier. The modified
NBI method actually generates 12 points, implying that one
or more of the steplengths within the iterates was less than
Vm . For this example, the original NBI algorithm proves
to be the most computationally expensive. The weighted
method is not computationally expensive overall, but gen-
erates far fewer points on the Pareto frontier. The reason is
that the Pareto frontier is made of three linear segments, and
the weighted method only generates the four points that con-
nect the three linear segments. The modified NBI method
generates the most points with the least number of function
calls overall and lowest number of function calls per point
generated on the Pareto frontier.

Table 2 Methods used for
comparison of Ex 1 LP
(Vm = 0.1)

Method Optimization No. of No. of Function Function calls/no.

problems variables constraints calls of points obtained

Weighted method 11 2 6 239 47.8

Constraint method 11 2 7 435 39.5

NBI method 11 3 8 556 50.5

Modified NBI method 1 4 8 216 18.0
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Fig. 6 Solution to test example 2 (Mueller-Gritschneider et al. 2009)
using the modified NBI method

5.2 Three-dimensional problem

The Pareto frontier of a three-dimensional problem, referred
to as Example 2 (Mueller-Gritschneider et al. 2009) is repro-
duced below to show the output from the modified NBI
method. The first step is to pick one of the objectives which
will be fixed. In this case, for example, pick f2. Then, find
the CHIM+; in particular the individual minimum of f2 will
also be found, along with the maximum value that f2 takes
in the CHIM+. In this case, f2 has a minimum of f2 = 3
and a maximum of f2 = 10. Hence, partition the interval
[3, 10] by Vm (0.1 in this example). Then, fixing values of

f2 for each value in the partition of [3, 10], solve the result-
ing bi-objective optimization problem with f2 fixed. Hence,
objective functions greater than three still require solving
multiple optimization problems. However, the results for
computational cost are still better than NBI.

Example 2 was solved using 29,546 function calls (456 s
on a 2 GHz, 4 GB RAM computer) using the modified NBI
method and 3.6 × 108 function calls (20,454 s) using the
NBI method. It is important to note that the modified NBI
generated a Pareto front similar to the one reported before
(Mueller-Gritschneider et al. 2009), which is more accu-
rate than the Pareto front generated from the original NBI
method. The Pareto frontier in Fig. 6 is generated in several
two dimensional “lines.” This shows that an even generation
for multiple dimensions is not possible with the modified
NBI method.

5.3 Additional numerical examples

Various other examples were chosen from the literature
to show the strength and versatility of the modified NBI
method. Problems ZDT 2, ZDT 3, TNK were chosen (Deb
et al. 2002) because their Pareto frontiers are “difficult to
generate” (Becerra and Coello 2006). Problems DTLZ 9
(Deb et al. 2002) and Example 3 (Messac et al. 2003)
were chosen because the constraints of the problems are
“difficult to satisfy, hence to generate Pareto optimal solu-
tions” (Becerra and Coello 2006). CTP 2 (Isaacs et al. 2008)
was chosen as it is considered a difficult problem with
regard to both Pareto frontier and constraints. The following
Table 3 shows the results. Note that “Nonlinear” in this table
implies functions that are neither convex nor concave. For
more difficult problems, a smaller Vm was chosen as to get

Table 3 Comparison of solutions for numerical examples

Test example Constraints Variables Pareto frontier Step Modified NBI Original NBI Modified NBI Original NBI

length Vm function calls function calls F.Calls/#points F.Calls/#points

Ex 1 LP 6 2 Convex 0.1 396 556 33.00 55.6

Example 3 5 2 Nonlinear 0.01 2,860 6,743 44.7 122.6

ZDT 2 6 2 Concave 0.1 317 762 39.6 69.3

22 10 Concave 0.1 545 2,204 68.1 200.4

202 100 Concave 0.1 4,145 20,428 518.1 1,857.1

ZDT 3 6 2 Nonlinear 0.01 4,220 2.11×106 29.1 2,144

22 10 Nonlinear 0.01 33,395 1.66×107 230.3 1.65×105

202 100 Nonlinear 0.01 2.66×105 1.33×109 1,832.1 2.11×107

DTLZ 9 5 2 Concave 0.01 2,496 2.49×106 46.2 24712

21 10 Concave 0.01 6,549 5.34×107 116.9 5.28×105

201 100 Concave 0.01 51,909 3.24×108 910.7 3.21×106

TNK 6 2 Nonlinear 0.001 9,065 2.71×107 159 27,167

CTP 2 21 10 Nonlinear 0.01 101,145 > (1013) 1,806.2 –
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Fig. 7 Solution to example 3

a more accurate representation of the Pareto frontier. This
set of examples provides evidence that smaller values of Vm

give more accurate representations of a Pareto frontier. CTP
2 could not be solved using the original NBI algorithm for
comparison. Hence, a genetic algorithm was used for com-
parison which could not converge in 1013 function calls, so
was stopped and no solution was reported.
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Fig. 8 Solution to ZDT 2
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Fig. 9 Solution to ZDT 3

Table 3 shows that an increase in variables and con-
straints does not lead to a drastic increase in function calls
(and function calls per number of Pareto points generated)
in the modified NBI method when compared to the original
NBI algorithm. The difference in the number of function
calls is from an order of magnitude (for ZDT 2, ZDT 3) to
over three orders of magnitude (for DTLZ 9, TNK, CTP 2).
Figures 7, 8, 9, 10, 11 and 12 present the Pareto frontiers
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Fig. 10 Solution to DTLZ 9
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Fig. 11 Solution toTNK

to corroborate the accuracy of the method, with results for
ZDT 2, ZDT 3, DTLZ 9 shown for 100 variables.

To show an example of what happens when Vm is not
chosen to be large enough, we present the following Fig. 13a
and b based on Fig. 7. As given in Table 3, the value
of Vm for Example 3 was chosen to be Vm = 0.01 and
Fig. 7 displays the resulting Pareto set. However, this Pareto
set would have been less accurate if Vm was chosen to be
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Fig. 12 Solution to CTP 2

Vm = 0.05 as shown in Fig. 13a and quite inaccurate if Vm

was chosen to be Vm = 0.1 as shown in Fig. 13b. Thus,
choosing smaller values of Vm or foregoing computational
efficiency and using Step 9 in the algorithm in Section 4
can help overcome the problem of inaccurate Pareto set
generation under this method.

6 Welded beam design problem (engineering example)

This example is a well-known welded beam problem
from the literature (Ragsdell and Phillips 1976). In this
problem, a beam is to be welded to a rigid support mem-
ber. The beam has a rectangular cross-section and is to be
made out of steel. The beam is designed to support a force
F = 6000 lbf acting at its free end, and there are constraints
on the shear stress, normal stress, deflection, and buckling
load on the beam. The problem has four continuous design
variables, and they are: thickness of the weld, length of
the weld, thickness of the beam, and width of the beam.
The two objectives of the problem are to minimize the total
cost f1(x) of making such an assembly and the difference
between the force F and allowable buckling load f2(x). For
complete formulation of the bi-objective optimization prob-
lem including specific values of the parameters, please refer
to Gunawan and Azarm (2004).

This example highlights the strength of the modified NBI
method over the original NBI algorithm A portion of the
Pareto frontier shown by squares is generated that could
not be generated by original NBI algorithm. The number
of function calls for the modified NBI method (710) was
also significantly less than the number of function calls for
the original NBI algorithm (35,476) (Fig. 14).

7 Heat exchanger design problem
(engineering example)

The following example is from the literature (Magrab et al.
2004) and describes the design of a heat exchanger. The two
objectives are to maximize heat transfer (minimize the nega-
tive of heat transfer f2 and minimize the length of the tubing
f1. Several equations govern the heat transfer. The con-
straints of the model restrict the structure, and the pressure
drop on the tube side and shell side. In this example, cold
water is in the tubes and hot water is on the shell side and
the problem has been setup in a counterflow arrangement
for 124 tubes and two-pass heat exchanger. For the com-
plete formulation, please refer to Magrab et al. (2004) and
Siddiqui et al. (2011). Figure 15 shows the results generated.

This example could not be solved using the original
NBI algorithm. The problem was solved in 18,754 function
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a b

Fig. 13 a Ex 3 with Vm = 0.05 b Ex 3 with Vm = 0.1

calls. However, note that the Pareto frontier is generated in
clumps. Also, not a lot of points are generated and it took
a lot of function calls. This example also shows where the
modified NBI algorithm cannot perform so well. The heat
exchanger design has a lot of discontinuities in constraint
functions and its Pareto frontier. The modified NBI method
in this case was not able to provide an evenly distributed
accurate Pareto frontier.
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Fig. 14 Results for the welded beam example
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Fig. 15 Heat exchanger design Pareto points as given by the modified
NBI method

8 Concluding remarks

This paper presents an improved multi-objective optimiza-
tion approach to the original NBI algorithm. The pro-
posed modified NBI method obtains Pareto solutions to
multi-objective optimization problems with continuous and
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discontinuous Pareto frontiers with lower computational
cost than the original NBI algorithm. The approach is tested
with 16 numerical and engineering examples with the most
general problem having a nonlinear (non-convex) objec-
tive function and nonlinear (non-convex) constraints with
discontinuous Pareto frontiers. The modified NBI method
provides approximate Pareto solutions to general nonlin-
ear multi-objective optimization problems, with a way to
improve this approximation if desired.

The test examples show the strength of the proposed
method when compared to the original NBI algorithm. Not
only is the method computationally more efficient, but for
some examples also obtains better (lower objective func-
tion value) solutions when compared to the original NBI
algorithm. The number of function calls increases at not
an exponential rate with an increase in number of vari-
ables and constraints. A wide variety of numerical exam-
ples and two engineering examples are presented to verify
the approach.

The proposed approach does have limitations. First, for
number of objective functions three or greater, the method
is not computationally tractable, though it still provides
reliable results as in Example 2. Moreover, the method
depends on the calculation of the payoff matrix of objec-
tive functions. For number of functions greater than three,
calculating this matrix can become computationally expen-
sive. Second, as witnessed in the heat exchanger design
example, a large number of discontinuities in the problem
and/or Pareto frontier can result in an uneven distribution
of the Pareto solution points. Third, while this was not
evident in the numerical examples, there is no theoretical
proof that the modified NBI algorithm will always provide
an accurate representation of the Pareto frontier. While the
Numerical results are encouraging, as shown in this paper,
the theoretical proof is part of future work.

In closing, the main advantage of the modified NBI algo-
rithm is simplicity of the algorithm. It is a gradient-based
algorithm, which requires the solution of far less optimiza-
tion problems than the original NBI algorithm. The other
advantage is that it numerically appears to be much more
computationally efficient than the original NBI algorithm.
Finally, the method is an efficient way to generate multiple
points on the Pareto frontier with very low computational
effort per point generated.
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