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a b s t r a c t

We present an efficient multiobjective mixed binary linear program that automates schematic mapping
for network visualization and navigation. Schematic mapping has broad applications in representing
transit networks, circuits, disease pathways, project tasks, organograms, and taxonomies. Good
schematic maps employ distortion while preserving topology to facilitate access to physical or virtual
networks. Automation is critical to saving time and costs, while encouraging adoption. We build upon
previous work, particularly that of Nöllenburg and Wolff, improving upon the computational efficiency
of their model by relaxing integrality constraints and reducing the number of objectives from three to
two. We also employ an efficient augmented ϵ-constraint method to assist in obtaining all Pareto
optimal solutions, both supported and unsupported, for a given network. Through the Vienna Under-
ground network and a cancer pathway, along with three numerical examples, we demonstrate the
applications of our methods. Finally, we discuss future directions for research in this area.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A schematic map is a linear cartogram of a given network.
Symbolic representations of pathways in schematic diagrams
simplify complexity and facilitate orientation in a network. Thus,
schematization increases the visual impact, making it easier to
digest information. Distortion is regularly employed to make this
possible. Fig. 1 illustrates the influence of schematization on a
network user. A well-designed diagram is readily accessible and,
through regular interaction, a user is ultimately able to recreate
the image of the network (a process known as “mental mapping”)
to hasten the processes of orientation and navigation.

Schematic map drawing dates back centuries. A classic example
is the Tabula Peutingeriana from the fifth century, a symbolic and
distorted representation of the Roman road network across three
continents [1]. In modern times, the power of schematization has
been most visible in the representation of electric circuits and in
the mapping of modern urban transit networks. Harry Beck's work
in schematizing the London Underground map over a 30-year

period beginning in the 1930s set standards that are still relevant
today [2,3]. Beck's representation did away with the curves of
previous maps and replaced these with piecewise straight lines
oriented in multiples of 451 (a scheme now termed octilinear).
Beck also significantly enlarged the central portion of the map to
make it more readable [2] (see Fig. 2). Subsequent official revisions
to the Underground map by Beck and others rarely departed from
his original ideal. The majority of the metro maps created after
Beck's effort also followed his design cues [3], and a comparative
study of these maps reveals a consistent set of principles now
known as “metro map rules.” Beyond metro networks and transporta-
tion networks in general, schematic maps have been found to be
effective in other areas. They have been successfully used to represent
cancer pathways [4], as well as organizational structures and project
plans [5]. Schematic maps have broad applications, as they are
effective in visualizing pathways in networks of all kinds.

Producing a good schematic map is an expensive and time-
consuming process [6]. The best diagrams are usually created by
professional designers with the aid of computer graphics software.
Any represented network may undergo changes during its life-
span, and the needs and perceptions of its users will also vary with
time. These usually require modifications to its schematic map. A
procedure that can therefore automate the schematization process
to give consistent results subject to specified requirements in real
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time would be ideal and efficient. Efforts in this area of research
are detailed in Section 2. Of interest is Nöllenburg and Wolff's
multiobjective mixed integer program implementation [7].

This paper describes our improvements on Nöllenburg and
Wolff's method—a reduction in the number of objective functions
and a relaxation of integer constraints—for better performance.
Essentially, we reduced a mixed integer program to a mixed binary
linear program and implemented a method of finding the entire
set of non-dominated (Pareto optimal) solutions, which is critical
as not all Pareto optimal solutions can be obtained by the
weighting method approach employed by Nöllenburg and Wolff.
We also establish a framework for analysis and decision-making in
the Pareto space of equally efficient solutions. Finally, we show
through some examples how schematic maps can be automated
for a variety of applications.

2. Background and related work

Over the past 60 years, important insights have been gained in
the automation of schematic maps. Purchase et al. [8] conducted a
study that underscored the importance of aesthetics in schemati-
zation. In particular, their work proved that minimal line crossings
and bends make maps easier to use and remember. In their review,
Avelar and Hurni [6] motivate the importance of good design in
schematizing transportation networks, and they propose a stan-
dardization in representation.

Tamassia [9] developed an algorithm that utilized the network
properties of graphs to solve the problem of embedding a graph in
a rectilinear grid. The problem was modeled in terms of minimum
cost flow and the solution preserved topology while minimizing
the bend count. Tamassia's work [9] did much to characterize
important graphical elements of schematic maps, and also gen-
eralized the implementation for k-gonal graphs. Avelar and Müller
[10] proposed an iterative algorithm for schematic map generation
that also preserved input topology. They showed that topological
accuracy could be maintained using relatively simple geometric
analyses, as opposed to elaborate techniques. Their formulation
also emphasized the role of the designer in setting constraints for
aesthetics and legibility. Cabello et al. [11] describe a generalized
procedure for schematizing transport maps using a path-endpoint
framework. Their approach, which runs in linearithmic time,
preserves the original layout but terminates unsuccessfully if no
correct solution can be found.

Metro maps are a subset of schematic maps. Much of the work
done in automating metro map drawings is generally transferrable
to schematic maps, which tend to follow similar rules. Hong et al.
[12] were the first to completely automate metro map graph
layouts, and they demonstrated this through the use of various
force-directed algorithms. Hong et al.'s implementation neither
preserved the topology of the input embedding nor produced
octilinear solutions. Ribeiro et al. [13] also use a force-directed
implementation to automatically draw schematic maps. Their
results are efficiently produced and aesthetically pleasing, but
they focus on using spider maps in representing transit networks.
Stott et al. [14] later introduced a hill-climbing algorithm within a
multiobjective optimization framework to solve the metro map
automation problem. Their optimizer gave improved results, but
octilinearity was not enforced and optimality could not be guar-
anteed. Nöllenburg and Wolff [15,7] then developed a multi-
objective mixed integer program to solve the metro map
drawing problem. Like Stott et al. [14], Nöllenburg and Wolff [7]
used the weighting method to find optimal octilinear results.

While Nöllenburg and Wolff's multiobjective formulation is a
significant improvement compared to previous efforts and is able toFig. 1. Impact of schematization.

Fig. 2. Central sections of the 1908 edition of the London Underground map and Beck's first schematic version published in 1933 [2].
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produce good unlabeled maps, there is room for further development.
Nöllenburg and Wolff used the weighting method, which may ignore
potentially desirable solutions [16]. Their tri-objective model, while
elegant, does not lend itself easily to analysis of the solution space.
Finally, the coordinate integrality requirements unnecessarily slowed
down their method. We sought to address these issues by simplifying
their model, relaxing coordinate integer constraints, and implement-
ing an augmented ϵ-constraint method developed by Mavrotas and
Florios [17] to determine the set of efficient solutions and analyze the
objective space.

Multiobjective mixed integer programs (MOMIPs) have been
successfully used to model numerous real-life problems. For
example, Scappara and Church developed a two-level approach
to a mixed-integer program for infrastructure management [18].
Much important work has been done in finding non-dominated
solutions to optimization problems, and several algorithms have
been tailored to their specific applications [19,20]. In the area of
visual representation, Cano et al. [21] introduced a novel meta-
heuristic approach to solving the problem of proportionally sym-
bolic cartograms. Marti and Estruch [22] also proposed a heuristic
method for solving the edge-crossing minimization problem.

Various other research problems related to automated schematic
map drawing have also been tackled, such as those dealing with bend
minimization and path simplification [23,24]. In a departure from
convention, Fink et al. [25] have proposed a “curvilinear” drawing
approach which has produced metro maps using a force-directed
algorithm. Hurter et al. [26] have also created a schematic automation
method specifically for air traffic control routes. They use simulated
annealing to solve a cost minimizationmodel that penalizes crossings,
density and distortion.

2.1. Why automation is important

It has been amply demonstrated that distortion, when correctly
applied, can greatly enhance the mental perception of a network
[8,14,6]. The best diagrams still require significant manual effort to
produce and usually at great expense [6]. For example, the London
Underground network map took over three decades to attain the
widely accepted form that has not changed much since the 1950s [2].
This is why computer automated drawings are crucial for modern
applications. With the emergence of modern mobile technology,
demand is ripe for dynamic maps that can toggle on or off layered
information. We focus on static maps in this paper, but we keep in
mind that advances in computing technology will mean that complex
problems will be increasingly solvable in real time. The computer-
automated process in schematic diagramming can save significant
amounts of time and money in map making, with a potential for
impact in transit network design [27], understanding disease pro-
gressions [4], and visualizing complex plans [5] and pathways.

Guo [27] has shown that schematic maps influence how passen-
gers perceive and utilize a transit network. Using the London Under-
ground network as a case study, it can be argued that passengers'
favorable disposition to a network is affected by how it is represented,
a phenomenon Guo coins as the “map effect.” In the case of bicycle
networks, numerous efforts, both personal and official, have been
made to schematize their maps in the hopes of boosting ridership. An
automated solution to this can significantly increase the production of
schematic maps. Bicycle networks are of particular interest [28], as
urban sustainability through reduced automobile congestion and
increased public health benefits [29] are critical outcomes of positive
network perceptions.

2.2. This paper's contributions and improvements

Our work is significant in that it shows we can generate schematic
solutions much quicker by simplifying, reformulating, and tightening

the multiobjective model presented by Nöllenburg and Wolff [7]. In
particular, we relax the integrality constraints on the coordinate
variables to achieve this efficiency. We still obtain proven optimal
solutions, and we show this through three numerical examples and
two applications.

An important characteristic of an automatic schematization tool is
to provide a useful starting point for a designer to produce a final
representation, as computers have limited decision-making ability.
Beyond manually selecting weights to obtain tailored solutions, we
show how the ϵ-constraint method of solving multiobjective pro-
grams can be used to efficiently generate a Pareto frontier of non-
dominated solutions. Specifically, we adapt Mavrotas and Florios'
augmented ϵ-constraint implementation [17]. Our results show how
a framework can be developed for evaluating desirable schematic
diagrams from a set of efficient (Pareto optimal) solutions. This is the
first time this method has been used in solving the schematic map
drawing problem, and we believe this is a critical development in that
all Pareto points—which may not always be found by varying weights
—can be obtained by the user or the designer.

Automatic schematic map drawing has largely been presented
within the sphere of metro map drawing. This is understandable,
as much of the interest in this subject arose from efforts to
automate metro maps. In this paper, we implement our method
on the Vienna Underground as a case study. However, we go
further to illustrate how the automatic schematic method can also
be applied to disease pathway representation. We hope that our
efforts will spur further work in broadening the applications of
automatic schematic mapping.

3. The schematic drawing problem

The schematic map drawing problem is formally defined as
follows:

Find the best drawing Γ of the graph ðG;LÞ subject to schematic
rules, where GðV ; EÞ is a planar input embedding ΠðvÞ of a set V
of vertices and a set E of edges, with L the set of lines or line
cover of G.

The vertices vi and edges ei, elements of V and E, respectively,
constitute the topology of G. Together, these elements divide the graph
into bounded zones known as faces, where each face f is an element of
F, the set of all faces. Trailing or circumferential edges collectively
make up the unbounded external face [9]. A graph can thus be further
described by a list of the edges, in circular order, occurring in each face
—a planar representation [9]. The sets of vertices, edges and faces in a
planar graph are related by Euler's formula:

jEj þ2¼ jV j þ jF j ð3:1Þ
We summarize these definitions below:

GðV ; EÞ planar input graph, as a function of V and E
ðG;L) possible metro graph
Γ drawing operator
ΠðvÞ geographic location of each vertex v in the plane
L set of lowest number of paths linking all vertices in G

(line cover)
L metro line (element in L)
E set of edges e in graph
V set of vertices v in graph G
F set of faces f in graph
l number of lines in G
m number of edges of G
n number of vertices of G
r number of faces of G
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The nature of the schematic rules enforced depend on the type
of map being drawn. For the purposes of this paper, we restrict
ourselves to the Beck-inspired diagram whose aesthetics are
encapsulated within the following major guidelines:

(A) Octilinearity: All edges must originate at angles that are multi-
ples of 451. This necessitates that the output be on an octilinear
grid with four axes: x ð01Þ; y ð901Þ; z1 ð451Þ and z2 ð�451Þ.

(B) Bend avoidance: Along each line, bends must avoided as much
as possible. Obtuse bends are favored over acute or right ones.

(C) Topological correctness: The relative positions of vertices and
their connectivities must remain the same, for the sake of
readability and mental mapping. In other words, the face
structure of the solution is identical to that of the input.

(D) Edge uniformity and spacing: Edge lengths should be kept as
even as possible. Nonadjacent edges must also keep a mini-
mum distance to ensure clarity.

(E) Edge shifting: Imposing an optimal octilinear output necessi-
tates linear distortion. Edges are allowed to be shifted in
keeping with this geometry as long their relative positions to
other adjacent edges are maintained.

A few of these guidelines are illustrated in Fig. 3.
We do not address the labeling problem in this paper. If labels

were to be included, however, they would ideally not overlap and
would be grouped into blocks with the same orientations. Line
colors should also be optimally distinguishable, but this compo-
nent is not included in our implementation. In the mixed integer
formulation that will be discussed in the following section, guide-
lines (A), (C) and (D) are modeled as hard constraints since they are
strict requirements. Guidelines (B) and (E) are however modeled as
objective cost functions or soft constraints, as they describe
aesthetic preferences.

4. Mixed integer program formulation

The mixed integer program presented in this paper develops
the model introduced by Nöllenburg and Wolff [7] into a multi-
objective mixed binary linear program. Unlike Nöllenburg and
Wolff's formulation, which has three objective cost functions, ours
utilizes only two, namely: shift and bend. We eliminate their “total
edge length” cost function, replacing this with an upper bound on
edge lengths ℓmax. This can have the same value for all edges, or
take on different values based on the edge or face properties (as
we demonstrate in the Vienna Metro and cancer pathway exam-
ples). The conversion to a biobjective problem facilitates analyses,
especially regarding tradeoffs on a two-dimensional Pareto fron-
tier. Notably, we also find that it is not necessary to impose integer
constraints on the vertex coordinates. The subsequent relaxation
greatly speeds up solve times, as we will demonstrate. Numerical
evidence indicates that Pareto optimal solutions will remain on

the octilinear grid and we obtain them faster with integrality
relaxation in place.

The bend and shift costs describe the objective functions that
address the aesthetic considerations of schematic maps in the
Beck style [2]. The objectives are subject to three sets of hard
constraints that deal with the following properties: octilinearity
and edge length, circular ordering and nonadjacent edge spacing.
We describe each set of constraints in detail. Before this, we
introduce the geometric and combinatorial framework for the
input problem layout.

4.1. Coordinate space for octilinear grid

To facilitate constraint formulation, Nöllenburg and Wolff
proposed two new axes in the 7451 directions, namely z1 and
z2. Each vertex v can thus be referenced by four coordinates:
xðvÞ; yðvÞ; z1ðvÞ; z2ðvÞ, although only the first two are sufficient to
locate the vertex. The new axes are related to the conventional
ones in the following manner:

z1ðvÞ ¼
xðvÞþyðvÞ

2

z2ðvÞ ¼
xðvÞ�yðvÞ

2
ð4:1Þ

This definition reinforces the L1 metric used as the basis for the
grid. Thus, all vertices at the corner of a unit square are equidistant
from the origin as are those centered on each side of the square.
The coordinate system is shown in Fig. 4.

It is important to note that integer coordinates (on all four axes)
will always guarantee grid placement. Our numerical results
indicate that we can obtain Pareto optimal grid-based points
without specifying integer constraints on the coordinates x, y, z1
and z2, in a departure from Nöllenburg and Wolff's implementa-
tion [7]. By relaxing the coordinate integer constraints

0rxðvÞ; yðvÞ; z1ðvÞ; z2ðvÞAR ð4:2Þ
we gain efficiency. There are still binary variables in the model
that remain unchanged. In a few examples in Section 4, we
compare our relaxation results against those of Nöllenburg and
Wolff, highlighting significant improvements in execution time.

We hold that optimal solutions to the schematic drawing
problem will always be found on the octilinear grid. We demon-
strate this idea through a few examples. While some planar
representations can have off-grid optimal solutions, as we will
show, it appears that on-grid optimal solutions are the cheaper to
compute. It is on this basis that we motivate the relaxation of the
coordinate integer constraints Nöllenburg and Wolff imposed in
their model. Our observation is that we still obtain integer
solutions but in a shorter period of time, as fewer nodes have to
be traversed during the branch-and-bound search.

Consider the graph in Fig. 5a, which is the solution to a given
input embedding, where xð1Þ ¼ 0, xð2Þ ¼ 2 and xð3Þ ¼ 4. If we fixed
xð3Þ ¼ 4:5 before solving, then the solution would result in a shift

Fig. 3. Illustration of three guidelines under consideration for schematization. (a) Edge octilinearization, (b) line bend minimization, (c) topology preservation. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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of xð1Þ and xð2Þ, as well (Fig. 5b). This is essentially a translation of
the grid in order to maintain octilinearity. If we decided, however,
to keep xð2Þ at 2, while xð3Þ was also fixed at 4.5, the solution
would result in a shift of yð3Þ to maintain octilinearity (Fig. 5c).

Also, moving any one of the y coordinates would result in a
solution that translates the entire graph by the same amount. If
two y coordinates are forced to be in a position where the
resulting edge cannot be octilinear, then the problem becomes
infeasible.

Non-integer edge lengths can always be forced to appear, as
long as octilinearity is not violated. Sometimes, this would result
in scaling or translating the grid. In such cases, the solution would
still be considered as on a grid. As will be seen in the next several
subsections, the minimum integer edge lengths we set also
encourage integer solutions. Also, solver architecture ensures we
never encounter non-integer solutions. An optimal integer result is
always favored, and even more so since we set integer edge
lengths as starting points.

To bring this point further home, we consider a second
example (Fig. 6a). This graph has one bounded face. A possible
outcome of fixing yð1Þ at v10 is a translation of the entire graph
(Fig. 6b). The solution is still essentially on a grid. While y
coordinates have non-integer values, the edges maintain integer
lengths. Forcing both xð1Þ and yð1Þ to remain at v1″ might result in
a scalar expansion of the graph, a solution which still lies on a grid
(Fig. 6c). Scaling the grid accordingly essentially means the edge
lengths have integer values on the new scale.

The examples in Figs. 5 and 6 are simple but atypical for most
real-world applications. They both have only one unbounded face.
For a graph with a more complicated structure (two or more
faces), it becomes even more difficult to find an off-grid Pareto
optimal point. We consider a four-face planar graph (Fig. 7). A non-
integer edge length may be impossible to have if adjacent edges
cannot be adjusted accordingly to retain the face structure and

maintain octilinearity. If edge eð5;6Þ (in the z2 direction), for
example, were to have a non-integer edge length that was not
proportional to that of eð1;6Þ and eð6;3Þ, an octilinear structure
would not be possible.

We can further motivate the existence of a drawing with
integer edge lengths for every octilinear graph of a given input
embedding by assuming that all edge lengths in such a graph are
rational numbers. It is then trivial to show that there is always a
number that can be multiplied by each edge length to produce an
integer solution.

In summary, integer Pareto optimal points can be obtained
without enforcing integer constraints. The major difference in our
model, compared to Nöllenburg and Wolff's [7], is the reduction of
a mixed integer program to a mixed binary linear program, which
is demonstrably easier to solve, and the application of the
augmented ϵ-constraint method to find efficient solutions.

4.2. Sector assignments

The key building block of this formulation, which Nöllenburg
and Wolff introduced, is the sectorialization of edges. Based on the
eight-direction octilinear grid, each edge eðu; vÞ in the input
embedding is assigned to a sector sec0ðu; vÞ based on its angular
distance (722:51) from it. Thus,

sec0ðu; vÞ ¼

0 337:51r∠uvo22:51
1 22:51r∠uvo67:51
2 67:51r∠uvo112:51

⋮
6 247:51r∠uvo292:51
7 292:51r∠uvo337:51

8>>>>>>>><
>>>>>>>>:

ð4:3Þ

In pursuit of an optimal solution, each edge is allowed to either
remain in its original sector sec0 or move a sector forward secþ1 or
backward sec�1:

secþ1 ¼ sec0þ1 mod 8 ð4:4Þ

sec�1 ¼ sec0�1 mod 8 ð4:5Þ
The variable dirðu; vÞ holds the value of the sector each edge in the
solution eventually takes. This disjunction sets up a combinatorial
problem which necessitates the use of binary variables α0, αþ1

and α�1 for each edge, which can only take one of three possible
sectors. These variables must satisfy the relation

X
iA f�1;0;1g

αiðu; vÞ ¼ 1 ð4:6Þ

The directional variables are thus described as follows:

dirðu; vÞ ¼
X

iA ð�1;0;1Þ
seciðu; vÞ � αiðu; vÞ ð4:7Þ

dirðv;uÞ ¼
X

iA ð�1;0;1Þ
seciðv;uÞ � αiðu; vÞ ð4:8Þ

The direction and sector variables are directional, and all move-
ments are represented in modulo 8. Thus,Fig. 4. Quadraxial coordinate system and octilinear grid.

Fig. 5. Non-integer and off-grid solutions are possible in a simple face structure such as this one, but they are typically more costly to find.
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seciðu; vÞ ¼ seciðv;uÞþ4 mod 8 ð4:9Þ

dirðu; vÞ ¼ dirðv;uÞþ4 mod 8 ð4:10Þ

4.3. Octilinearity and edge length constraints

Further disjunctive constraints are necessary for ensuring
octilinearity. For each of the eight possible directions, they require
the ordinates of the edge be equal, while the abscissae must differ
by a minimum edge length ℓminðu; vÞ. The constraints are shown
below for sectors 0 and 1. Similarly constructed constraints hold
for the six other sectors. They are disjunctive constraints [30],
represented using a conjunction of linear constraints in what is
termed the “big-M formulation”:

seciðu; vÞ ¼ 0 :

yðuÞ�yðvÞrMð1�αiðu; vÞÞ
�yðuÞþyðvÞrMð1�αiðu; vÞÞ
�xðuÞþxðvÞZ�Mð1�αiðu; vÞÞþℓminðu; vÞ

8><
>:

ð4:11Þ

seciðu; vÞ ¼ 1 :

z2ðuÞ�z2ðvÞrMð1�αiðu; vÞÞ
�z2ðuÞþz2ðvÞrMð1�αiðu; vÞÞ
�z1ðuÞþz1ðvÞZ�Mð1�αiðu; vÞÞþℓminðu; vÞ

8><
>:

ð4:12Þ
The coordinate values are bounded above by M:

xðvÞ; yðvÞrM 8vAV ð4:13Þ
If M is too large, the model might become unstable or computation
time may be lengthened. If M is not large enough, some otherwise
optimal solutions may be rendered infeasible. In our implementa-
tion, we have chosen M as

M¼
X
eAE

eðu; vÞ � ℓmaxðu; vÞ ð4:14Þ

which gives an upper bound with the assumption that all the
edges are sequentially connected, thus spanning the map in any
direction in L1. This value has proved large enough to accommo-
date all Pareto optimal points, while keeping the model stable.

In another departure from Nöllenburg and Wolff's implemen-
tation, we assume edge length maxima are user-defined. While
Nöllenburg and Wolff minimize the sum of all edge lengths, we
argue for setting a hard constraint on these:

xðuÞ�xðvÞrℓmaxðu; vÞ
�xðuÞþxðvÞrℓmaxðu; vÞ
yðuÞ�yðvÞrℓmaxðu; vÞ
�yðuÞþyðvÞrℓmaxðu; vÞ ð4:15Þ
We not only gain time in computation, but more critically, our
formulation is now biobjective, making it easier to analyze (two-
dimensional Pareto frontier) and quicker to solve (fewer variables).

4.4. Circular order constraints

An important set of constraints that preserve topology (input
face structure) and guarantee readability are the circular order
constraints. They ensure that spanning edges from a vertex retain
their relative position and do not overlap. This set of constraints is
expressed as

dirðu; vjÞrdirðu; vjþ þ1Þ�1þ8βðu; vjÞ;
8u : degðuÞZ2; j¼ f1;2;…;degðuÞg ð4:16Þ
where

XdegðvÞ

j ¼ 1

βðu; vjÞ ¼ 1 8u : degðuÞZ2 ð4:17Þ

The order constraints only hold for vertices whose degree (number
of spanning edges) is greater than or equal to 2. We can further
control the number of variables required by restricting the
application of these constraints to vertices of degree 3 or greater
and only to degree-2 vertices for which the edges are 2 or fewer
sectors apart.

4.5. Edge spacing constraints

Edge spacing constraints ensure a specified minimum distance
dmin between nonadjacent edges on the same face. The binary
variable γi, indexed over the 8 cardinal (or axial) directions,
ensures that this minimum distance is kept in at least one
direction (or the relevant direction) for each nonadjacent same-
face edge pairing. Hence,

X
iA fN;NW;…;E;NEg

γðe1ðu; vÞ; e2ðu; vÞ; f ÞZ1 ð4:18Þ

The big-M formulation is again employed to model disjunction.
The two sets for the north (N) and the northwest (NW) directions

Fig. 6. Fixing non-integer coordinates creates solutions which retain integer edge lengths on a translated or scaled grid.

Fig. 7. A more complex face structure makes it difficult or impossible to find
completely off-grid solutions.
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are given below.

yðu2Þ�yðu1ÞrMð1�γNðe1; e2; f ÞÞ�dmin

yðu2Þ�yðv1ÞrMð1�γNðe1; e2; f ÞÞ�dmin

yðv2Þ�yðu1ÞrMð1�γNðe1; e2; f ÞÞ�dmin

yðv2Þ�yðv1ÞrMð1�γNðe1; e2; f ÞÞ�dmin ð4:19Þ

�z2ðu2Þþz2ðu1ÞrMð1�γNWðe1; e2; f ÞÞ�dmin

�z2ðu2Þþz2ðv1ÞrMð1�γNWðe1; e2; f ÞÞ�dmin

�z2ðv2Þþz2ðu1ÞrMð1�γNWðe1; e2; f ÞÞ�dmin

�z2ðv2Þþz2ðv1ÞrMð1�γNWðe1; e2; f ÞÞ�dmin ð4:20Þ
The minimum spacing requirement also ensures that edge

crossings are avoided. (See the Appendix for a full list of the
inequalities.)

4.6. Cost functions and soft constraints

The optimal solution must maximize the obtuseness of all
bends in each line. The bend cost, to thus be minimized, is defined
as

Cbend ¼
X
LAL

X
uv;vwAL

bendðu; v;wÞ ð4:21Þ

This cost can be described as the sum of all the bend costs for
adjacent edge pairings in each line. Constraints are designed to
assign costs of 1, 2, and 3 to bends of 1351;901 and 451,
respectively [7]:

Δdirðu; v;wÞ ¼ dirðu; vÞ�dirðv;wÞ ð4:22Þ

bendðu; v;wÞ ¼minfjΔdirðu; v;wÞj ;8�jΔdirðu; v;wÞj g ð4:23Þ
We recall that dirðu; vÞAf0;1;…;7g denotes the sector assigned to
the edge eðu; vÞ in the solution. The difference Δdirðu; v;wÞ
between the directional variables of adjacent edges eðu; vÞ and
eðv;wÞ gives a measure of the bend angle. Since there is a wrap-
around at the modulus 8, we find the minimum of the absolute
value of Δdir and its difference from 8 (Eq. (4.24)). Linearizing this
equation requires the use of two more binary variables, δ1ðu; v;wÞ
and δ2ðu; v;wÞ, thus:
�bendðu; v;wÞrΔdirðu; v;wÞ�8δ1ðu; v;wÞþ8δ2ðu; v;wÞ

bendðu; v;wÞZΔdirðu; v;wÞ�8δ1ðu; v;wÞþ8δ2ðu; v;wÞ ð4:24Þ
Eqs. (4.24) simply represent the inequality

bendðu; v;wÞZ jΔdirðu; v;wÞ�8δ1ðu; v;wÞþ8δ2ðu; v;wÞj ð4:25Þ
As the bend cost is minimized, δ1, δ2 or both are switched on or off
in order to correctly calculate the bend cost for each edge, which
will have a value of 0, 1, 2, or 3. For instance, if two adjacent edges
have dirðu; vÞ ¼ 1 and dirðv;wÞ ¼ 7, respectively, then Δdirðu; v;wÞ
¼ 1�7¼ �6. The cost of this bend would be bendðu; v;wÞ ¼ 2,
where δ1ðu; v;wÞ ¼ 0 and δ2ðu; v;wÞ ¼ 1.

Each edge also incurs a cost of 1 for shifting forward or
backward from its original sector. The total shift cost of the
octilinear drawing is given by

Cshift ¼
X
uvAE

shiftðu; vÞ; ð4:26Þ

where

�M � shiftðu; vÞrdirðu; vÞ�secorigðu; vÞrM � shiftðu; vÞ ð4:27Þ
For each edge eðu; vÞ, shiftðu; vÞ is thus a binary variable. For
example, consider sec0ðu; vÞ ¼ 3 for a given edge in an input
embedding. If dirðu; vÞ ¼ sec0ðu; vÞ ¼ 3, then shiftðu; vÞ ¼ 0. How-
ever, if dirðu; vÞ ¼ sec�1ðu; vÞ ¼ 2 or dirðu; vÞ ¼ secþ1ðu; vÞ ¼ 4, then
shiftðu; vÞ ¼ 1. The total shift cost is the sum of all shiftðu; vÞ for
every edge eðu; vÞ in the graph.

4.7. Implementing the augmented ϵ-constraint method

An important question in schematic map automation is how
the decision on the final solution is made. For any given input
embedding, a number of acceptable solutions may exist. In pre-
vious multiobjective formulations, particularly the one developed
by Nöllenburg and Wolff [15,7], the weighting method has been
used to find these points. In our modified biobjective case, this
would be written as

min : λbendCbendþλshiftCshift ð4:28Þ

s:t: octilinearity and edge length constraints ð4:29Þ

circular order constraints ð4:30Þ

edge spacing constraints ð4:31Þ

where λbend and λshift are appropriately chosen weights for bend
and shift, respectively. This method is useful for generating a
single result based on the desired weighting combination. How-
ever, the weighting method may fail to generate the complete set
of Pareto optimal solutions, regardless of the choice of weighting
combinations [16]. These supported solutions are obtained by
optimizing a convex combination of the objectives. However,
unsupported Pareto optimal solutions may also exist. The ϵ-
constraint method is therefore necessary in filling any such gaps
in finding efficient solutions. Scaling can also be an issue in the
weighting method, and one might need to adjust the objective
functions to reduce the effects of uneven matching. This is a non-
issue in the ϵ-constraint method [31].

We thus implement an efficient version of the ϵ-constraint method
to counter the influence of weight scaling, relieve the user of the
burden of deciding on weighting combinations and produce both
nonextreme and, importantly, unsupported Pareto optimal solutions.
Our algorithm of choice is the augmented ϵ-constraint method
(AUGMECON2) developed by Mavrotas and Florios [17] and imple-
mented in GAMS. (Earlier, Mavrotas [31] presented the AUGMECON
method, which has since been superseded by AUGMECON2 in terms
of performance.)

The basic augmented ϵ-constraint method for a multiobjective
problem optimizes the first objective and successively uses the
others as constraints bounded by the values generated in a payoff
table partitioned into grid intervals. AUGMECON2 is preferred over
the basic ϵ-constraint method for a number of reasons. First, it
employs lexicographic optimization to calculate the payoff table,
thus avoiding dominated solutions. Second, it ensures that only
efficient (and not weakly efficient) solutions are produced. This is
implemented by replacing the inequalities for the constrained
objective functions with equalities and corresponding slack vari-
ables; the main objective is modified accordingly. Finally, AUGME-
CON2 [17] uses a “jump” procedure, in which bypass coefficients
are calculated from the innermost slack variables to skip over grid
locations that do not produce Pareto optimal solutions. This bypass
feature improves performance, as does the “early exit loop” feature
(first introduced in AUGMECON [31]) that skips to the next row of
grid points once an infeasibility is detected. Overall, these features
make Mavrotas and Florios' augmented ϵ-constraint method
attractive for solving multiobjective mixed integer programs such
as ours.

Our formulation is given below. The second term in Eq. (4.32) is
the “augmentation.”

min : Cbend�ϵ
sshift
rshift

ð4:32Þ

s:t: Cshiftþsshift ¼ eshift ð4:33Þ
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eshift ¼ ubshift�
ishiftrshift
gshift

ð4:34Þ

where ϵ¼ 10�3 (a small scalar quantity), sshift is the slack (or
surplus) variable for the shift function, rshift is the range of the
payoff table for the shift cost function (used as a scaling factor),
and eshift is the RHS of the constrained shift function, whose value
depends on the grid location in the payoff table. ubshift is the upper
bound of the shift function Cshift, and ishiftAf0;1;…; gshiftg, where
gshift is the number of grid intervals determined by the user. The
complete Pareto frontier is obtained when gshift : ¼ rshift. Fewer
grid points would result in shorter computation times but would
give a sparser Pareto frontier [31]. The user, therefore, may want to
carefully consider the selection of grid intervals, especially when
solving large problems.

Using AUGMECON2, we obtain a Pareto frontier that enables us
to visually and quantitatively evaluate the tradeoff between shift
and bend across all the noninferior solutions.

5. Preliminary evaluation

We present three working examples to evaluate the perfor-
mance of our implementation, compared to the earlier work of
Nöllenburg and Wolff. The three examples are introduced in order
of increasing complexity.

5.1. Minimal example

This first minimal example consists of four vertices and two
lines (1–2–3 and 2–4). Fig. 8 shows the input embedding and the
original sectors to which each edge belongs.

For ease of reference, we have assigned numerical labels to the
vertices. From Fig. 8b, we see that edge eð2;3Þ is originally
positioned at an angle slightly greater than 22.51 to the horizontal.
It is thus assigned to sector 1, that is sec0ð2;3Þ ¼ 1. The circled
numbers in Fig. 8b denote the sector numbers from 0 to 7.
Similarly, edge eð2;4Þ lies within 722.51 of 901, hence it is
assigned to sector 2: sec0ð2;4Þ ¼ 2. Table 1 shows the sector
assignments for each edge. In each case, sec�1 and secþ1 are also
shown. In the solution(s), each edge can be assigned to any of the
three sectors through the directional variable dirðu; vÞ, as long as
none of the hard constraints are violated.

Vertex 2 has three spanning edges, thus:

degð2Þ ¼ 3 ð5:1Þ
It is clear that in this model, edges eð1;2Þ and eð2;3Þ will not
overlap under any circumstances (see Eq. (4.7)). The circular order
constraints (Eqs. (4.16) and (4.17)), however, ensure that other
edge pairs eð2;3Þ and eð2;4Þ or eð1;2Þ and eð2;4Þ never overlap. The
edge spacing constraints are not under consideration here, as
there are no nonadjacent edge pairs.

The optimal solutions to this input embedding are trivial
(Fig. 9). In the first solution (Fig. 9a), fCbend;Cshiftg ¼ f0;1g, while
in the second (Fig. 9b), fCbend;Cshiftg ¼ f1;0g, since all three edges
retain their original sector positions.

These two figures show that while mathematical models can
produce Pareto optimal solutions, humans remain the best
equipped to decide which solutions are desirable. Pareto point
(A) has zero line bends but it sacrifices relative accuracy in the
positioning of edge eð2;3Þ. For the decision-maker who does not
consider a 1351 bend a problem but prioritizes accuracy in
representation, then the preferred solution would be (B).

5.2. Dual-line network

We present a second example that still has only 2 lines (1–2–4–
5–6 and 2–3–5–7) but with a more complex structure. This dual-
line network has 2 faces, 7 edges and 7 vertices (Fig. 10). The
internal face is bounded by the edges ð2;3Þ; ð3;5Þ; ð2;4Þ and ð4;5Þ.
There are several nonadjacent same-face edge pairings in this
example, thus making the edge spacing constraints (Eqs. (4.18) and
(4.19)) relevant.

Table 2 shows the sector assignments for all seven edges. We
recall that the angle between two vertices u and v is measured
counterclockwise from the horizontal. From Fig. 10, it is clear that
sec0ð3;5Þ ¼ 0. For this and the other edges, Eq. (4.3) is used to
determine the sector assignments.

Our augmented ϵ-constraint implementation generates three
Pareto optimal solutions (Fig. 11). Solution (A) has the lowest bend
cost but it also has the highest shift cost, illustrating why solutions
with smoother lines may appear increasing dissimilar to the
original map. Solution (C) has no shifted edges, but it has the
costliest bends. A designer, for instance, might be dissatisfied with
the amount of geometric distortion in Solution (B), especially those
of edges eð1;2Þ and eð5;7Þ, in which case they may decide to
increase their lengths. Other factors, such as the placement of
geographic features or label positioning, can influence the choice
of a solution.

The graph of the Pareto frontier in Fig. 12 visualizes the tradeoff
between shift and bend for the three solutions. A graphic such as
this one would be useful in evaluating the merits of each
representation relative to the others.

Since this example is still relatively simple, the solutions may
seem obvious, not necessarily requiring automated assistance to
generate. The Pareto frontier, however, enables human involve-
ment in the decision-making process.

Fig. 8. Minimal example: 2 lines (1–2–3 and 2–4), 3 edges, 4 vertices, 1 face;
fl;m;n; f g ¼ f2;3;4;1g. (a) Input embedding, (b) initial sectors of the edges.

Table 1
Sector parameters for each edge.

Edge uv sec�1ðu; vÞ sec0ðu; vÞ secþ1ðu; vÞ

1–2 7 0 1
2–3 0 1 2
2–4 1 2 3

Fig. 9. Pareto optimal solutions to minimal example. (a) fCbend;Cshiftg ¼ f0;1g,
(b) fCbend ;Cshiftg ¼ f1;0g.
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5.3. Four-line network

This four-line example is more robust with a structure likely to
be found in an actual network. It has 13 edges, 11 vertices and
4 faces (Fig. 13).

Five Pareto optimal points exist (Fig. 14), and our method
enables us to visually compare them alongside one another
(Fig. 15).

Solution (E) has zero shift, and while it may be more appealing
due to its similarity to the input embedding, the other solutions
are equally valid and worthy of consideration. For instance,
solution (A) has the lowest bend objective value and may be
regarded by some as easiest to navigate. We checked with the
weighting method and found that of the five Pareto points,
solution (D) is unsupported, and may not have been found without
the augmented ϵ-constraint method.

5.4. Preliminary evaluation

We solved the examples described above on a 2.3 GHz Intel i7
machine (16 GB RAM). The examples were programmed in GAMS
and Python and solved with the CPLEX 12.6 solver. Our tests show
that relaxing the integer constraints on the coordinates and

simplifying the model to a biobjective one produces identical
optimal results to Nöllenburg and Wolff's method [7] but in much
less computational time. Using the AUGMECON2 [17] method also
has the added benefit of generating multiple efficient solutions,
including those unsupported, in a single run. In the augmented ϵ-
constraint formulation, we chose unit-spaced grid intervals span-
ning the range of the shift objective. For the minimal example, we
used only 2 grid points. In the dual-line and four-line networks,
we used 3 and 5 grid points, respectively. The performance benefit
of using fewer grid points is not readily apparent for these
examples, since they are small. However, using the maximum
possible number of grid points (equal to the range of the shift
objective plus 1) will always produce the complete Pareto set for a
given problem in our formulation.

In order to highlight our improvements, we compare the
performance of three methods (Table 3). The first, N&W–WM3, is
Nöllenburg and Wolff's model—tri-objective with coordinate inte-
ger constraints—implemented using the weighting method. The
second, O&S–WM2, is our improved model—biobjective with inte-
ger coordinates relaxed—also implemented using the weighting
method only for the sake of direct comparison to Nöllenburg and

Fig. 10. Dual-line network: 2 lines (1–2–4–5–6 and 2–3–5–7), 7 edges, 7 vertices,
2 faces; fl;m;n; rg ¼ f2;7;7;2g.

Table 2
Sector parameters for each edge in the dual-line network.

Edge uv sec�1ðu; vÞ sec0ðu; vÞ secþ1ðu; vÞ

1–2 7 0 1
2–3 1 2 3
2–4 0 1 2
3–5 7 0 1
4–5 1 2 3
5–6 0 1 2
5–7 7 0 1

Fig. 11. Solutions to dual-line network. (a) fCbend ;Cshiftg ¼ f2;2g, (b) fCbend;Cshiftg ¼ f3;1g, (c) fCbend;Cshiftg ¼ f5;0g.

Fig. 12. Pareto frontier for dual-line network solutions.

Fig. 13. Four-line network: 4 lines, 13 edges, 11 vertices, 4 faces;
fl;m;n; rg ¼ f4;13;11;4g.
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Wolff's method. The third, O&S–AUGMECON2, is the augmented ϵ-
constraint implementation of our improved model. We note again
that the integer relaxation only affects the coordinate variables.
The binary variables (α, β, δ1, δ2, γ, shift) remain intact, as they are
essential in formulating the disjunctive constraints. Relaxing the
integrality constraints reduces the number of nodes visited in the
branch-and-bound algorithm used by the CPLEX MIP solver.

Generally, both our implementations demonstrate better per-
formance than Nöllenburg and Wolff's method, as shown in
Table 4. Comparing the weighting approaches, ours (O&S–WM2)
solves to optimality in 15% less time for both the minimal and
dual-line network examples. For the four-line network, there is a

30% decrease in execution time between N&W–WM3 and O&S–WM2.
With O&S–AUGMECON2, we obtain multiple unique solutions in each
single run. Considering the average execution time per solution,
we observe a decrease in performance for the minimal example.
This is not the case for the dual- and four-line networks, where
we record a performance gain of 24% and 61%, respectively, in
comparison to N&W–WM3. The efficiency of AUGMECON2 increases
substantially as the problem grows in size, and this is more telling
for large networks, as our case studies will show.

6. Evaluation on existing networks: two case studies

Our goal for improving the performance of this model is to
increase its accessibility and scalability, such that it can be
effectively applied over a broad range of situations. We therefore
apply our method to the Vienna Underground network in Vienna,
Austria, and to a cancer pathway map [4].

6.1. Vienna Metro

The Vienna Metro network has 5 lines, 90 edges, 84 vertices
and 8 faces. Fig. 16 shows the geographic layout and the official
schematic version of the metro.

First, we used the weighting method based on our improve-
ments (biobjective mixed binary) to find a single solution to the
network. We compared our results to those obtained via Nöllen-
burg and Wolff's tri-objective mixed integer model, also imple-
mented within our framework. One set of constraints that
generates the most variables in this model is the edge spacing
constraint group. Especially in metro networks, these constraints
are mostly relevant when there are pendant (trailing) edges on the
external face of a graph. They are also important for preventing
interior faces from being too small in a final solution. In this
example, we are able to solve the network using the weighting
method without even calling upon the edge spacing constraints. In
this case, Nöllenburg andWolff's model execution time is 1.7 times
as long as ours. When we enforce the edge spacing constraints,
however, Nöllenburg and Wolff's model takes 14 times as long as
ours to solve to optimality (Table 5).

For these tests, we used the weighting ratio λbend : λshift ¼ 7 : 3.
In every case, the weights add up to 1. Thus, in O&S–WM2,
λbend ¼ 0:7 and λshift ¼ 0:3. We point out that in the N&W–WM3

Fig. 14. Pareto optimal solutions to four-line network. (a) fCbend;Cshiftg ¼ f3;4g, (b) fCbend;Cshiftg ¼ f4;3g, (c) fCbend;Cshiftg ¼ f5;2g, (d) fCbend;Cshiftg ¼ f7;1g, (e)
fCbend;Cshiftg ¼ f9;0g.

Fig. 15. Pareto frontier for four-line network.

Table 3
Description of methods compared for performance (N&W – Nöllenburg and Wolff;
O&S – Oke and Siddiqui).

Method Objective
functions

Integer
constraints

Optimization approach

N&W–WM3 3 Yes Weighting method
O&S–WM2 2 No Weighting method
O&S–AUGMECON2 2 No Augmented ϵ-constraint

method
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case, we have an additional objective function—total edge length—
to consider. So, in order to maintain the same bend-shift weight-
ing ratio for the sake of comparison, we use λlength ¼ 0:2, while
λbend ¼ 0:56 and λshift ¼ 0:24. The solutions obtained via the
implementations O&S–WM2 and N&W–WM3 are fairly identical,
but that of O&S–WM2 (Fig. 17a) appears to be more spatially
optimized, since we do not minimize the sum of edge lengths.
The tri-objective Nöllenburg and Wolff implementation, N&W–

WM3, generates solutions that lie on a three-dimensional Pareto
frontier, which explains why its solution f16;25g is not optimal in
O&S–WM2 or O&S–AUGMECON2.

With this particular weighting ratio, dispensing with the edge
spacing constraints does not affect the solutions for both O&S–WM2

and N&W–WM3 (Fig. 17). This implies that edge spacing constraints
may not always be required. However, if they are not enforced,
certain solutions may feature crossing violations that alter the face
structure of the graph. We observe this for a bend-shift weighting

ratio of 1 : 1 in O&S–WM2. There is a clear edge violation between
pendant edges on the green and orange lines in the solution
generated (Fig. 18). The edge spacing constraints must therefore be
consistently enforced, especially for O&S–AUGMECON2, as we cannot
always predict where they will be redundant. For the Vienna
network, however, the edge spacing constraints can be restricted
to pairs of nonadjacent pendant edges on the external face.

We then solve the Vienna network via O&S–AUGMECON2. The
Pareto frontier obtained is shown in Fig. 20. To generate the
complete Pareto set, we use integer-spaced grid points spanning
the range of the shift objective. In this case, the number of grid
points is given by

ng ¼maxfCshiftg�minfCshiftgþ1¼ 38�1þ1¼ 38 ð6:1Þ
There are 27 Pareto points in the complete set, five of which are
displayed in Fig. 19. A single run took 70min to execute (an average of
2:36 min per solution), using four threads in CPLEX. Eight of these

Table 4
Average execution time per unique solution for three numerical examples, using three implementations; N&W – Nöllenburg and Wolff (3 objectives); O&S – Oke and
Siddiqui (2 objectives).

Method Minimal example Dual-line network Four-line Network

Solutions generated
per run

Execution time per
solution (s)

Solutions generated
per run

Execution time per
solution (s)

Solutions generated
per run

Execution time
per solution (s)

N&W–WM3 1 0.778 1 1.069 1 1.767
O&S–WM2 1 0.661 1 0.913 1 1.188
O&S–AUGMECON2 2 1.145 3 0.810 5 0.682

Fig. 16. Geographic and official layouts of the Vienna Metro network. (a) Vienna Metro (geographic layout), (b) Vienna Metro (official layout) [32].

Table 5
Execution times for the Vienna Metro problem, with λbend : λshift ¼ 7 : 3; N&W – Nöllenburg and Wolff (3 objectives); O&S – Oke and Siddiqui (2 objectives).

Method Vienna (no edge spacing constraints) Vienna (with edge spacing constraints)

Objective cost fCbend;Cshiftg Execution time per solution (s) Objective cost fCbend ;Cshiftg Execution time per solution (m:s)

N&W–WM3 f16;25g 10.7 f16;25g 28:41
O&S–WM2 f13;28g 6.2 f13;28g 2:39
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solutions were found to be supported, that is, they could be found
using the weighting method. We checked this first by manually
varying the weights in steps of 0.1. We then used the Gather-
Update-Solve-Scatter (GUSS) extension in GAMS [33] to solve 39
scenarios generated from sequential weighting combinations. The
augmented ϵ-constraint method was therefore indispensable in
obtaining the other 19 unsupported Pareto optimal solutions.

In this case of the Vienna network, the decision-maker might
determine that any existing pool of efficient solutions intermediate
between (D) and (F) are likely to be very similar, but if such solutions
(high number of bends but similar to original layout) are of interest,
then more grid points could then be chosen. Furthermore, the

Fig. 17. Vienna solutions computed via the weighting approach; λbend : λshift ¼ 7 : 3.
N&W – Nöllenburg and Wolff (3 objectives); O&S – Oke and Siddiqui (2 objectives).
(a) O&S–WM2; fCbend;Cshiftg ¼ f13;28g, (b) N&W–WM3; fCbend;Cshift;Clengthg ¼
f16;25;186g.

Fig. 18. Edge crossing violation (O&S–WM2). λbend : λshift ¼ 1 : 1 and
fCbend;Cshiftg ¼ f24;13g. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)

Fig. 19. Pareto optimal points for the Vienna underground network. (a) fCbend ;Cshiftg ¼ f10;38g, (b) fCbend;Cshiftg ¼ f13;28g, (c) fCbend;Cshiftg ¼ f18;19g,
(d) fCbend;Cshiftg ¼ f24;13g, (e) fCbend;Cshiftg ¼ f32;9g, (f) fCbend;Cshiftg ¼ f48;1g.

Fig. 20. Pareto frontier for Vienna Metro network (obtained via O&S–AUGMECON2).
The points circumscribed by squares represent the supported solutions. The filled
points (labeled) are shown in Fig. 19.
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AUGMECON2 algorithm can be modified to have unequal grid inter-
vals, so that more solutions can be generated within the area of
interest. The initial layout of the Pareto set and the corresponding
solutions enable the decision-maker to be more acquainted with the
solution space, and further steps can be taken from there regarding
the choice or discovery of a final satisfactory solution.

An important innovation Harry Beck introduced in his creation of
the London Undergroundmap [2] was the magnification of the central
portion of a transit map, which tended to be denser with a higher
concentration of tracks and lines. This central clustering is clearly
visible in the geographically accurate map of the Vienna system
(Fig. 16a). Beck not only evened out distances between stations on
his map but also increased the relative distances of central stations,
creating the iconic “vacuum flask” shape that is a highlight of the
London map (Fig. 2). This type of distortion is perhaps more critical for

transit networks, where interchanges tend to cluster at one or more
central locations.We can correct for this in the Vienna implementation
by doubling the minimum edge length ℓminðu; vÞ for those edges
found in the smaller interior faces. At the same time, we decrease the
maximum edge length ℓmaxðu; vÞ constraint for the pendant (trailing)
edges on the exterior face. These refinements ensure that the solution
is spatially balanced with no visual overcrowding. They can be
consistently applied in solving similar transit networks. The effects
of this in our solution (Fig. 19) may not be too evident, but we could
always increase the bounds of these constraints for more desirable
results, thereby creating other classes of solutions (Pareto frontiers).
Fig. 21 illustrates a solution we obtained by properly addressing this
issue. The edges in the four smallest faces have greater edge lengths
than those on the external face.

6.2. Cancer pathway

Our second example is the “subway map of cancer pathways”
developed by Hahn and Weinberg, and designed by Bentley [4]
(Fig. 22). While it is already a schematic map, we apply our
method here to see if we can obtain comparable or better Pareto
optimal points within our framework of requirements. Our imple-
mentation has 9 lines, 51 vertices, 56 edges and 6 faces.

Pathways, such as this one, may be challenging to model, as
they tend to have more vertices with spanning edges than typical
metro networks. The edge spacing constraints are essential here,
as these also prevent edge crossings. In solving the Vienna metro
network, we restricted the edge spacing constraints to the pen-
dant edges on the external face. In this example, however, there
are pendant edges on the internal faces, as well. Thus, we extend
the application of the constraints to non-incident pairs of pendant
and non-pendant edges in the same faces.

Using the AUGMECON2 implementation, we obtain the complete
Pareto set in 165min. A few selected solutions are shown in Fig. 23.

Fig. 21. Vienna Pareto optimal point with central magnification emphasized;
fCbend;Cshiftg ¼ f17;37g.

Fig. 22. Subway map of cancer pathways [4].
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Unsurprisingly, one of the Pareto points (solution (D) in Fig. 23) is
nearly identical to the input embedding (Fig. 22), which indicates how
well-designed the cancer map is. However, we now have a range of
elegant solutions from which to choose. The complete Pareto frontier
is shown in Fig. 24, and it consists of 15 points. We note that all the
pendant edges have an upper bound of length 4, while all other edges
have a maximum length of 8 imposed. Changing any of these bounds
would produce a Pareto set with a different range of solutions, which
could also be explored.

As we have seen from the examples of the Vienna Underground
and the Hahn and Weinberg cancer pathway, metro maps do not
always share similar properties with other pathway or network
representations. Depending on the nature of the application, certain
considerations (for instance, edge length or edge spacing restrictions)
may be more relevant. To facilitate the versatile deployment of this
model, a framework must be developed for standardizing constraints
to accommodate all possible design specifications. We can fine-tune
our implementation to eliminate or reduce programming inefficien-
cies and speed up execution times.

7. Conclusions and future work

We have shown in this paper that relaxing integrality con-
straints, simplifying the problem to two objective functions, and
reformulating certain equations leads to obtaining more Pareto
optimal solutions to the schematic map drawing problem than
current methods. Moreover, the computational time to obtain
solutions is greatly reduced. We built on Nöllenburg and Wolff's
implementation and simplified their model to a biobjective mixed
binary linear problem and obtained Pareto optimal solutions much
quicker. We developed three hypothetical examples to demon-
strate our results. We were also able to test our implementation on
two real-world examples. A new development we have shown is
the ability to compute a complete Pareto set for a schematic
drawing problem, using Mavrotas and Florios' augmented ϵ-
constraint method (AUGMECON2). This implementation allows
for multiple supported and unsupported efficient solutions to be
generated in a single run, enabling decision-makers to quickly

evaluate potential candidates for schematic mapping solutions.
We have also demonstrated that AUGMECON2 is preferred to the
weighting method used by Nöllenburg and Wolff, as it guarantees
finding all Pareto optimal solutions, including those that are
nonextreme and unsupported.

Currently, we are working on a formal proof in support of our
conjecture that integer optimal solutions can be found without
enforcing coordinate integer constraints. Also, we would like to
explore alternatives to the big-M formulation. Various methods
have been developed to model disjunctivity, which features in the
octilinearity and edge spacing constraints of this model. Care must
be taken in determining the size of M, and in our implementation,
it is equivalent to the maximum total edge length (Eq. (4.14)). Thus
far, this has worked well, but we would like to implement and test
the merits of the Reformulation Linearization Technique (RLT).
Khurana et al. have demonstrated success in applying RLT to mixed

Fig. 23. Selected Pareto optimal points for the cancer pathway. (a) fCbend;Cshiftg ¼ f21;17g, (b) fCbend ;Cshiftg ¼ f26;10g, (c) fCbend;Cshiftg ¼ f28;8g, (d) fCbend;Cshiftg ¼ f31;5g, (e)
fCbend;Cshiftg ¼ f33;3g, (f) fCbend;Cshiftg ¼ f37;1g.

Fig. 24. Pareto frontier for Hahn and Weinberg cancer pathway (obtained via O&S–
AUGMECON2). Solutions corresponding to the filled points (labeled) are shown in Fig. 23.
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0-1 programs [34]. We expect that implementing this would
significantly increase performance in our case. Also in consideration
is an attempt to reformulate this problem as a mathematical
program with equilibrium constraints (MPEC). Siddiqui and Gabriel

[35] developed a method that employs Schur's decomposition using
type-1 special-ordered set (SOS1) variables to provide global optima
for MPECs. The challenge in this case, would be devising ways to
remodel the schematic requirements as complementarity con-
straints. If we succeed in doing this, we will then compare the
performance of Siddiqui and Gabriel's method with the numerical
relaxation approach for MPECs formulated by Steffensen and
Ulbrich [36]. Finally, Vincent et al. [37] have recently refined a
branch-and-bound algorithm (initially developed by Mavrotas and
Diakoulaki [38]) for solving our specific program class (mixed
binary linear programs). We hope to adapt this to the map drawing
problem as well.

We will continue efforts to improve the performance and
expand the applications of automatic schematic mapping. A few
new rules may have to be developed along the way depending on
the network in question. For example, bicycle and bus networks
have slightly different specifications compared to those of urban
rail. Ultimately, we are interested in creating a dynamic user-
friendly optimization tool that would be accessible for professional
and public use in a wide variety of situations, able to produce
solutions that address all considerations and facilitate the
decision-making process.
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Appendix A

Here is a summary of the variables and equations used in this
paper. For more background, refer to [7] and [17].

Objective functions:

Cbend ¼
X
LAL

X
uv;vwA L

bendðu; v;wÞ ðA:1Þ

Cshift ¼
X
uvAE

shiftðu; vÞ ðA:2Þ

Augmented ϵ-constraint formulation (O&S–AUGMECON2):

min : Cbend�ϵ
sshift
rshift

ðA:3Þ

s:t: Cshiftþsshift ¼ eshift ðA:4Þ

eshift ¼ ubshift�
ishiftrshift
gshift

ðA:5Þ

General constraints ðnÞ
Weighting method formulation (O&S–WM3)

min : λbendCbendþλshiftCshift ðA:6Þ

s:t: General constraints ðnÞ
General constraints (n):

Δdirðu; v;wÞ ¼ dirðu; vÞ�dirðv;wÞ ðA:7Þ

bendðu; v;wÞ ¼minfjΔdirðu; v;wÞj ;8�jΔdirðu; v;wÞj g ðA:8Þ

�bendðu; v;wÞrΔdirðu; v;wÞ�8δ1ðu; v;wÞþ8δ2ðu; v;wÞ
bendðu; v;wÞZΔdirðu; v;wÞ�8δ1ðu; v;wÞþ8δ2ðu; v;wÞ ðA:9Þ

�M � shiftðu; vÞrdirðu; vÞ�secorigðu; vÞrM � shiftðu; vÞ ðA:10Þ

xðuÞ; yðuÞ; z1ðuÞ; z2ðuÞ coordinate variables
δkðu; v;wÞ; iAf1;2g binary variables for bend cost
γcðe1; e2; f Þ; cAfN;NE;…;NWg binary variables for edge spacing in each cardinal ðaxialÞdirection
iAf�1;0;1g positional index : original position or one sector back or forward
αiðu; vÞ binary variable that switches position for sector and direction
seciðu; vÞ iAf�1;0;1g sector assignment for edge
dirðu; vÞ directional variable indicating sector chosen in solution
bendðu; v;wÞ bend cost for edges uv and vw

shiftðu; vÞ shift cost per edge
M large constant used in modeling disjunctivity
ℓmaxðu; vÞ;ℓminðu; vÞ upperandlowerboundsonlengthofedgeuv
dmin minimum spacing between vertices on nonadjacent edge pairs
βðu; vjÞ; jAf1;…;degðuÞg set of vertices of specified lower bound of degree

ϵ¼ 10�3 augmentation factor in AUGMECON2 ϵ�constraint method
sshift slack variable for shift function in AUGMECON2
rshift range of shift payoff table values in AUGMECON2
eshift RHS of equality constraint computed from payoff table
ubshift upper bound of shift function in payoff table
ishiftAf0;1;…; gshiftg steps for grid points in AUGMECON2
gshift number of desired grid intervals for AUGMECON2
λbend weighting factor for bend function
λshift weighting factor for shift function
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M¼
X
eAE

eðu; vÞ � ℓmaxðu; vÞ ðA:11Þ

sec0ðu; vÞ ¼

0 337:51r∠uvo22:51
1 22:51r∠uvo67:51
2 67:51r∠uvo112:51
3 112:51r∠uvo157:51
4 157:51r∠uvo202:51
5 202:51r∠uvo247:51
6 247:51r∠uvo292:51
7 292:51r∠uvo337:51

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ðA:12Þ

secþ1 ¼ sec0þ1 mod 8 ðA:13Þ

sec�1 ¼ sec0�1 mod 8 ðA:14Þ

seciðu; vÞ ¼ seciðv;uÞþ4 mod 8 ðA:15Þ
X

iA f�1;0;1g
αiðu; vÞ ¼ 1 ðA:16Þ

Octilinearity and edge length constraints

dirðu; vÞ ¼
X

iA f�1;0;1g
seciðu; vÞ � αiðu; vÞ ðA:17Þ

dirðv;uÞ ¼
X

iA f�1;0;1g
seciðv;uÞ � αiðu; vÞ ðA:18Þ

dirðu; vÞ ¼ dirðv;uÞþ4 mod 8 ðA:19Þ

seciðu; vÞ ¼ 0 :

yðuÞ�yðvÞrMð1�αiðu; vÞÞ
�yðuÞþyðvÞrMð1�αiðu; vÞÞ
�xðuÞþxðvÞZ�Mð1�αiðu; vÞÞþℓminðu; vÞ

8><
>:

ðA:20Þ

seciðu; vÞ ¼ 1 :

z2ðuÞ�z2ðvÞrMð1�αiðu; vÞÞ
�z2ðuÞþz2ðvÞrMð1�αiðu; vÞÞ
�z1ðuÞþz1ðvÞZ�Mð1�αiðu; vÞÞþℓminðu; vÞ

8><
>:

ðA:21Þ

seciðu; vÞ ¼ 2 :

xðuÞ�xðvÞrMð1�αiðu; vÞÞ
�xðuÞþxðvÞrMð1�αiðu; vÞÞ
�yðuÞþyðvÞZ�Mð1�αiðu; vÞÞþℓminðu; vÞ

8><
>:

ðA:22Þ

seciðu; vÞ ¼ 3 :

z1ðuÞ�z1ðvÞrMð1�αiðu; vÞÞ
�z1ðuÞþz1ðvÞrMð1�αiðu; vÞÞ
z2ðuÞ�z2ðvÞZ�Mð1�αiðu; vÞÞþℓminðu; vÞ

8><
>:

ðA:23Þ

seciðu; vÞ ¼ 4 :

yðuÞ�yðvÞrMð1�αiðu; vÞÞ
�yðuÞþyðvÞrMð1�αiðu; vÞÞ
xðuÞ�xðvÞZ�Mð1�αiðu; vÞÞþℓminðu; vÞ

8><
>:

ðA:24Þ

seciðu; vÞ ¼ 5 :

z2ðuÞ�z2ðvÞrMð1�αiðu; vÞÞ
�z2ðuÞþz2ðvÞrMð1�αiðu; vÞÞ
z1ðuÞ�z1ðvÞZ�Mð1�αiðu; vÞÞþℓminðu; vÞ

8><
>:

ðA:25Þ

seciðu; vÞ ¼ 6 :

xðuÞ�xðvÞrMð1�αiðu; vÞÞ
�xðuÞþxðvÞrMð1�αiðu; vÞÞ
yðuÞ�yðvÞZ�Mð1�αiðu; vÞÞþℓminðu; vÞ

8><
>:

ðA:26Þ

seciðu; vÞ ¼ 7 :

z1ðuÞ�z1ðvÞrMð1�αiðu; vÞÞ
�z1ðuÞþz1ðvÞrMð1�αiðu; vÞÞ
�z2ðuÞþz2ðvÞZ�Mð1�αiðu; vÞÞþℓminðu; vÞ

8><
>:

ðA:27Þ

xðvÞ; yðvÞrM 8vAV ðA:28Þ

xðuÞ�xðvÞrℓmaxðu; vÞ
�xðuÞþxðvÞrℓmaxðu; vÞ
yðuÞ�yðvÞrℓmaxðu; vÞ
�yðuÞþyðvÞrℓmaxðu; vÞ ðA:29Þ
Circular order constraints

dirðu; vjÞrdirðu; vjþ þ1Þ�1þ8βðu; vjÞ; j¼ f1;2;…;degðuÞg
ðA:30Þ

XdegðvÞ

j ¼ 1

βðu; vjÞ ¼ 1 8u : degðuÞZ2 ðA:31Þ

Edge spacing and crossing constraints
X

cA fN;…;NEg
γðe1; e2; f ÞZ1 ðA:32Þ

xðu2Þ�xðu1ÞrMð1�γEðe1; e2; f ÞÞ�dmin

xðu2Þ�xðv1ÞrMð1�γEðe1; e2; f ÞÞ�dmin

xðv2Þ�xðu1ÞrMð1�γEðe1; e2; f ÞÞ�dmin

xðv2Þ�xðv1ÞrMð1�γEðe1; e2; f ÞÞ�dmin ðA:33Þ

z1ðu2Þ�z1ðu1ÞrMð1�γNEðe1; e2; f ÞÞ�dmin

z1ðu2Þ�z1ðv1ÞrMð1�γNEðe1; e2; f ÞÞ�dmin

z1ðv2Þ�z1ðu1ÞrMð1�γNEðe1; e2; f ÞÞ�dmin

z1ðv2Þ�z1ðv1ÞrMð1�γNEðe1; e2; f ÞÞ�dmin ðA:34Þ

yðu2Þ�yðu1ÞrMð1�γNðe1; e2; f ÞÞ�dmin

yðu2Þ�yðv1ÞrMð1�γNðe1; e2; f ÞÞ�dmin

yðv2Þ�yðu1ÞrMð1�γNðe1; e2; f ÞÞ�dmin

yðv2Þ�yðv1ÞrMð1�γNðe1; e2; f ÞÞ�dmin ðA:35Þ

�z2ðu2Þþz2ðu1ÞrMð1�γNWðe1; e2; f ÞÞ�dmin

�z2ðu2Þþz2ðv1ÞrMð1�γNWðe1; e2; f ÞÞ�dmin

�z2ðv2Þþz2ðu1ÞrMð1�γNWðe1; e2; f ÞÞ�dmin

�z2ðv2Þþz2ðv1ÞrMð1�γNWðe1; e2; f ÞÞ�dmin ðA:36Þ

�xðu2Þþxðu1ÞrMð1�γWðe1; e2; f ÞÞ�dmin

�xðu2Þþxðv1ÞrMð1�γWðe1; e2; f ÞÞ�dmin

�xðv2Þþxðu1ÞrMð1�γWðe1; e2; f ÞÞ�dmin

�xðv2Þþxðv1ÞrMð1�γWðe1; e2; f ÞÞ�dmin ðA:37Þ

�z1ðu2Þþz1ðu1ÞrMð1�γSWðe1; e2; f ÞÞ�dmin

�z1ðu2Þþz1ðv1ÞrMð1�γSWðe1; e2; f ÞÞ�dmin

�z1ðv2Þþz1ðu1ÞrMð1�γSWðe1; e2; f ÞÞ�dmin

�z1ðv2Þþz1ðv1ÞrMð1�γSWðe1; e2; f ÞÞ�dmin ðA:38Þ

�yðu2Þþyðu1ÞrMð1�γSðe1; e2; f ÞÞ�dmin

�yðu2Þþyðv1ÞrMð1�γSðe1; e2; f ÞÞ�dmin

�yðv2Þþyðu1ÞrMð1�γSðe1; e2; f ÞÞ�dmin

�yðv2Þþyðv1ÞrMð1�γSðe1; e2; f ÞÞ�dmin ðA:39Þ

z2ðu2Þ�z2ðu1ÞrMð1�γSEðe1; e2; f ÞÞ�dmin

z2ðu2Þ�z2ðv1ÞrMð1�γSEðe1; e2; f ÞÞ�dmin

z2ðv2Þ�z2ðu1ÞrMð1�γSEðe1; e2; f ÞÞ�dmin

z2ðv2Þ�z2ðv1ÞrMð1�γSEðe1; e2; f ÞÞ�dmin ðA:40Þ
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