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Uncertainty and integer variables often exist together in economics and engineering design problems. The goal of
robust optimization problems is to find an optimal solution that has acceptable sensitivity with respect to uncertain
factors. Including integer variables with or without uncertainty can lead to formulations that are computationally
expensive to solve. Previous approaches for robust optimization problems under interval uncertainty involve nested
optimization or are not applicable to mixed-integer problems where the objective or constraint functions are neither
quadratic, nor linear. The overall objective in this paper is to present an efficient robust optimization method that
does not contain nested optimization and is applicable to mixed-integer problems with quasiconvex constraints
(⩽ type) and convex objective funtion. The proposed method is applied to a variety of numerical examples to test
its applicability and numerical evidence is provided for convergence in general as well as some theoretical results
for problems with linear constraints.
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1. Introduction

Optimization problems in economics and engineering often
involve mixed-integer decision variables and uncontrollable
variations or uncertainties. Optimal, feasible solutions might
end up being infeasible for particular realizations of uncertainty
factors. Manufacturing errors, measurement problems, and
uncertainty in inputs are examples of sources for these varia-
tions. Combined with having integer decision variables, finding
global solutions to such problems can be computationally
expensive.
In this paper, an approach for robust optimization for linear,

quadratic, convex, and quasiconvex mixed-integer programs
is developed by applying a worst-case analysis using the
Benders decomposition method. Whereas in the standard
Benders decomposition method (Benders, 1962) there is only
one set of complicating variables solved for in the master
problem, mixed-integer robust optimization problems have
two sets of complicating variables: the integer variables and
the uncertainty variables. Hence, two distinct master pro-
blems with accompanying optimal value functions αy and αu,

respectively will be introduced in this paper. Intervals with a
nominal point (user- or problem-defined) are used to repre-
sent uncertainty and no probability distribution is presumed.
A real-world design situation is reflected in this paper, for
example, when information about uncertain factors during
the early stages of a design process is often limited. This
paper is an extension of Siddiqui et al (2011) that provided
numerically verifiable solutions to continuous robust optimi-
zation problems. This current paper provides theoretical
foundations to the related paper and extends it to mixed-
integer robust optimization problems.
This paper’s approach (hereafter referred to as the Robust

Benders method) has been tested and verified with several
optimization problem examples, 13 of which are presented in
this paper. A comprehensive review of the literature was
conducted and to the best of our knowledge, tractable solutions
to these problems, examples of mixed-integer robust optimiza-
tion problems with convex objective functions and quasiconvex
constraints, have not been reported.
In addition to considering quasiconvex constraints, the robust

optimization problems solved by the proposed Robust Benders
method also require a separable (the function can be written as
the sum of a function involving only the integer variables and
another involving only the continuous variables) objective
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function. This paper presents theoretical evidence that the
Robust Benders method works for separable convex objective
functions and numerical evidence that it works for separable
nonlinear objective functions, both with quasiconvex con-
straints. This is more general than only considering a linear
objective function in the problem as reported in the liter-
ature (eg, Soyster, 1973; Balling et al, 1986; Ben-Tal and
Nemirovski, 2002) or quadratic (eg, Li et al, 2011) as well as
other versions involving convex programs (eg, Ganzerli and
Pantelides, 1999) or linearization to solve the problem (eg,
Balling et al, 1986). Note that many of the aforementioned
studies cannot be readily extended to handle mixed-integer
variables. Exceptions include Li et al (2011) that gives exact
solutions to convex quadratic programs and only approximate
solutions to non-convex quadratic programs. Bertsimas and
Sim (2004a, b) provide solutions to mixed-integer linear
programming (MILP) robust optimization problems, as well as
a linear approximation scheme for other programs. Solving
robust binary linear programs has also been discussed in
Atamturk (2006) and Wu (2011). Other integer solution
techniques with uncertainty (Zhu and Sherali, 2009; Zeghal
et al, 2011) are also present in the literature.
There has been an abundance of literature modifying Benders

decomposition (Benders, 1962) to solve various types of
optimization problems, including integer programs (Beale,
1965). A method to obtain robust solutions for a supply chain
planning problem using Benders decomposition was provided
by Poojari et al (2008). Saito and Murota (2007) described a
method to apply Benders decomposition to solve linear,
mixed-integer, robust optimization problems with ellipsoidal
uncertainty. However, this approach only works for linear
problems, while the Robust Benders method of this paper is
applicable for the class of problems solvable by the original
Benders decomposition method. It is important to note that the
method of this paper is not an extension to the method provided
in Saito and Murota (2007), but a novel application of
Benders decomposition not present in the literature. Finally,
Montemanni (2006) applied a Benders algorithm to a specific
robust spanning tree problem, while Ng et al (2010) applied
it to a specific semiconductor allocation problem that had
uncertainty.
In the next section, the background terminology and problem

definition are described along with supporting theory. Then, in
Section 3, a detailed formulation of the proposed Robust
Benders method is presented. Section 4 provides numerical
and engineering examples from the literature that highlight the
differentiating characteristics of this method. Some concluding
remarks will be provided in Section 5.

2. Background terminology and problem definition

Table 1 describes the terminology used in this paper.
The goal in robust optimization is to optimize the objective

function with respect to continuous decision variables x and

discrete decision variables y, satisfying all constraints and
ensuring the objective variation is kept within an acceptable
range Δf0, while accounting for uncertainty. Specifically, this
paper considers robust optimization problems of the form:

min
x;y

f ðx; y; 0; 0Þ

s:t:
f x; y; x̂; ŷð Þ - f x; y; 0; 0ð Þ

Δf0
⩽ 1;

8x̂ 2 -Δx;Δx½ �\Rnuð Þ; 8ŷ 2 -Δy;Δy½ �\Zmuð Þ
gj x; y; x̂; ŷð Þ⩽ 0 j ¼ 1; ¼ ; J;

8x̂ 2 -Δx;Δx½ �\Rnuð Þ; 8ŷ 2 -Δy;Δy½ �\Zmuð Þ
x 2 Rn; y 2 Zm ð1Þ

For ease of notation, it will not be explicitly mentioned
unless necessary that y and ŷ are integers. However, since
worst-case uncertainty is being considered, a continuous range
for ŷ 2 ½ -Δy;Δy� will be used since it is more conservative
than ŷ 2 ½ -Δy;Δy�\Zmu ; hence, consistent with the robust
optimization worst-case uncertainty framework. In the next few
paragraphs, we define terms used in the paper.

2.1. Objective robustness

For a candidate point (xc, yc), objective robustness holds if the
inequality

f xc; yc; x̂; ŷð Þ - f xc; yc; 0; 0ð Þ
Δf0

⩽ 1 (2)

is satisfied for all x̂ 2 ½ -Δx;Δx� and for all ŷ 2 ½ -Δy;Δy�:
Thus, this inequality ensures that the maximum positive

objective function variation stays below a certain predetermined
maximal amount Δf0 when presented with deviations in
uncertain variables. Note that there is no absolute value around
the left-hand side of the inequality in (2) because a lower
objective function value for a particular realization of the
uncertainty is actually a favourable outcome, and as such does
not need to be constrained.

Table 1 Definition of terms

Symbol Interpretation

x Vector of continuous decision variables
y Vector of integer decision variables
f Scalar Objective function to be minimized
gj x; y; x̂; ŷð Þ Scalar Constraint functions of the form ‘⩽ 0’
Δx,Δy Maximum deviations of uncertainty from nominal

values
x̂; ŷ Uncertainty variables: Deviations from nominal

values of uncertain variables:
x̂ 2 -Δx;Δx½ �; ŷ 2 -Δy;Δy½ �

Δf0 User specified tolerance for acceptable variation in
objective function under uncertainty
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2.2. Feasibility robustness

For a candidate solution (xc, yc) if

gj x
c; yc; x̂; ŷð Þ⩽ 0 8j ¼ 1; ¼ ; J (3)

is satisfied for all x̂ 2 ½ -Δx;Δx� and for all ŷ 2 ½ -Δy;Δy�;
then feasibility robustness holds.
Note that inequality (2) is just another constraint, so it

can be easily incorporated into inequality (3) when stating
formulation (1). From this point on, inequality (2) will not be
stated separately in any formulation but will be assumed to be
incorporated into inequality (3). Hence, whenever a property
will be attributed or required of a constraint function
gjðxc; yc; x̂; ŷÞ; we assume that it applies to f x; y; x̂; ŷð Þ -ð
f x; y; 0; 0ð ÞÞ=Δf0 as well. For example, whenever we require
gjðxc; yc; x̂; ŷÞ to be convex, it will be assumed that
f x; y; x̂; ŷð Þ - f x; y; 0; 0ð Þð Þ=Δf0 is required to be convex as
well. A more detailed description on objective robustness can
be found in Li et al (2006). Since (2) has now been included
in (3), the following formulation will be followed in the paper.
Note that the uncertainty variables have also been removed
from the objective function, as they are extraneous when (2) has
been incorporated into (3) (recall that we do not minimize over
uncertainty variables, only decision variables). For this paper,
we assume that the constraints and objective function are such
that a solution exists without uncertainty, that is, a solution
exists when at nominal: x̂ ¼ ŷ ¼ 0; so for ease of notation we
have removed them explicitly fixed to 0 from the objective
function.

min
x;y

f ðx; yÞ

s:t: gj x; y; x̂; ŷð Þ⩽ 0 j ¼ 1; ¼ ; J

x 2 Rn; y 2 Zm; x̂ 2 Rnu ; ŷ 2 Zmu

8x̂ 2 -Δx;Δx½ �;8ŷ 2 -Δy;Δy½ � ð4Þ

2.3. Robust point

A point that satisfies feasibility robustness for (4) is a robust
point. The set of robust points for (4) is denoted SR.

2.4. Globally optimal robust

For (4), a globally optimal robust solution (x*, y*) is a robust
point that is optimal (f (x*, y*)⩽ f (x, y),∀ (x, y)∈ SR)
The goal is to choose values of x and y such that the

formulation (4) gives an optimal solution regardless of the
values of x̂ and ŷ: Since this paper only considers the worst-case
analysis, the method aims to get the ‘worst’ values of x̂ and ŷ for
(4) These are called ‘globally interval-optimal’ values, as
defined next.

2.5. Globally interval-optimal

For a particular candidate solution (xc, yc) and set of constraint
functions gj; j= 1,…, J, a globally interval-optimal point is
defined as a point ðx̂c; ŷcÞ 2 ð½ -Δx;Δx�; ½ -Δy;Δy�Þ such that
gjðxc; yc; x̂; ŷÞ⩽ maxj gjðxc; yc; x̂c; ŷcÞ for all realizations of x̂ 2
½ -Δx;Δx� and for all ŷ 2 ½ -Δy;Δy�:
The point ðx̂c; ŷcÞ 2 ð½ -Δx;Δx�; ½ -Δy;Δy�Þ in the defini-

tion above is a particular value of the ðx̂; ŷÞ such that the
constraints in (4) attain their global maximum value for that
particular candidate value of uncertainty. For continuous g, a
globally interval-optimal point exists for each candidate.
Certain assumptions need to be made before proceeding, which
are stated below.

Assumption 1 The constraints gj in (4), for any fixed value of
uncertainty x̂; ŷ; form a convex, compact, nonempty feasi-
ble region over x.

Assumption 2 A globally optimal robust solution to (4)
exists.

The above assumptions deal with the existence of a robust
solution. Since robust optimization problems often occur in
engineering design and economics applications, the problem
structure dictates that all variables and uncertainties can be
bounded by either physical quantities and/or economic limita-
tions. The convexity and compactness of the feasible region is
required for the theoretical foundations, and can be relaxed for
specific applications if the aforementioned properties are satis-
fied locally. The following Lemma 1 relates the definitions of a
globally interval-optimal point and robust point. The theoretical
foundation will be based on interval-optimality, and Lemma 1
helps it proceed from robust optimization to finding interval-
optimal points.

Lemma 1 A candidate solution (xc, yc) for problem (4) is a
robust point if and only if its globally interval-optimal
point ðx̂c; ŷcÞ 2 ð½ -Δx;Δx�; ½ -Δy;Δy�Þ is such that
maxj gjðxc; yc; x̂c; ŷcÞ⩽ 0:

Proof If (xc, yc) is a robust point, then it must be true that
maxj gjðxc; yc; x̂; ŷÞ⩽ 0 for all realizations of x̂ 2 ½ -Δx;
Δx� and for all ŷ 2 ½ -Δy;Δy�: Hence, this implies that for
the associated globally interval-optimal pointðx̂c; ŷcÞ;
maxj gjðxc; yc; x̂c; ŷcÞ⩽ 0 as ðx̂c; ŷcÞ 2 ð½ -Δx;Δx�; ½ -Δy;
Δy�Þ: For the other side of the if and only if argument,
suppose the associated globally interval-optimal point has
maxj gjðxc; yc; x̂c; ŷcÞ⩽ 0: Then by the definition of glob-
ally interval-optimal, maxj gjðxc; yc; x̂; ŷÞ⩽ 0 for all reali-
zations of x̂ 2 ½ -Δx;Δx� and for all ŷ 2 ½ -Δy;Δy� which
implies that (xc, yc) is a robust point. □

Benders decomposition involves defining an auxiliary func-
tion (of only the complicating variables) and then approximat-
ing that function using Benders cuts. There are two sets of
complicating variables in this paper: the uncertainty variables
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and the integer variables. Along with minimizing with respect
to the uncomplicating variables (x), the objective is to minimize
with respect to the integer complicating variables (y) while
making sure that the uncertainty variables x̂; ŷð Þ take on
interval-optimal values. From Lemma 1, we can see then that
the optimization problem needs to be maximized (verified by
Lemma 2 later) with respect to the uncertainty variables. Hence,
two auxiliary functions (resulting in two master problems for
Benders decomposition) will be defined as below:

αu x̂; ŷð Þ ¼ min
x;y

f x; yð Þ

s:t: gj x; y; x̂; ŷð Þ⩽ 0 j ¼ 1; ¼ ; J

x 2 Rn; y 2 Zm ð5Þ

αy yð Þ ¼ min
x

f x; yð Þ

s:t: gj x; y; x̂; ŷð Þ⩽ 0; j ¼ 1; ¼ ; J

x̂ ¼ x̂fixed; ŷ ¼ ŷfixed

x 2 Rn ð6Þ

For further results, another definition and assumption are
required as stated below.

2.6. Worst-case uncertainty

A worst-case uncertainty value ðx̂wc; ŷwcÞ 2 ð½ -Δx; +Δx�;
½ -Δy; +Δy�Þ for optimization problem (4) is such that when
x̂ ¼ x̂wc; ŷ ¼ ŷwc is fixed in (4), any solution of (7) below yields
a globally optimal-robust solution.

min
x;y

f x; yð Þ

s:t: gj x; y; x̂; ŷð Þ⩽ 0; j ¼ 1; ¼ ; J

gj x; y; 0; 0ð Þ⩽ 0; j ¼ 1; ¼ ; J

x̂ ¼ x̂wc; ŷ ¼ ŷwc

x 2 Rn; y 2 Zm ð7Þ

Note that a worst-case uncertainty value differs from a
globally interval-optimal value of uncertainty in that a worst-
case uncertainty value does not have an associated predeter-
mined variable x but it is associated with a globally optimal
robust solution after solving (7). But it is trivial to note that a
worst-case uncertainty value of x̂; ŷ is a globally interval-
optimal point of uncertainty for some globally optimal robust
solution. For the examples in this paper, globally interval-
optimal values and worst-case uncertainty values coincide,
which may not always be the case. Consider the following
simple example of a robust optimization problem (without

integer variables for simplicity):

min f xð Þ ¼ - x1 - 2x2

s:t: g1 � 1 + x̂1ð Þx1 + 1 + x̂2ð Þx2 ⩽ 8

g2 � -2 + x̂3ð Þx1 + 1 + x̂4ð Þx2 ⩽ 5

g3 � -1 + x̂5ð Þx1 + -3 + x̂6ð Þx2 ⩽ -10

8x̂i 2 - 0:1; 0:1½ �; i ¼ 1; ¼ ; 6

Note that parameter uncertainty has been introduced in the
constraints of the problem. Realize also that, for example, if
x̂1 ¼ x̂2 ¼ 0:1 in the first constraint, then if x1 and x2 satisfy the
following inequality

1 + 0:1ð Þx1 + 1 + 0:1ð Þx2 ⩽ 8

then x1 and x2 also satisfy

1 + x̂1ð Þx1 + 1 + x̂2ð Þx2 ⩽ 8

8x̂i 2 - 0:1; 0:1½ �; i ¼ 1; 2

Hence, this ‘trick’ can be applied to all parameters and we
can get an optimization problem which will give us a robust
solution. In this case, x̂i ¼ 0:1; i ¼ 1; :::; 6 is a globally
interval-optimal value for any candidate solution x. It is also
the worst-case uncertainty value for this optimization
problem, as when fixed in the following formulation,
it defines the set of robust points SR (feasible region of the
following optimization problem) and helps obtain the
globally optimal robust solution (the solution to the follow-
ing optimization problem).

min f xð Þ ¼ - x1 - 2x2

s:t: g1 � 1 + 0:1ð Þx1 + 1 + 0:1ð Þx2 ⩽ 8

g2 � -2 + 0:1ð Þx1 + 1 + 0:1ð Þx2 ⩽ 5

g3 � -1 + 0:1ð Þx1 + -3 + 0:1ð Þx2 ⩽ -10

The solution to this robust optimization problem can be
found by looking at the corner points of the robust feasible
region which gives x1=1, x2= 69/11 (approximately 6.27),
f(x)=− 149/11 (approximately − 13.54), with associated worst-
case uncertainty value x̂i ¼ 0:1; i ¼ 1; :::; 6:
The next assumption1 is required for the theoretical

background of the Robust Benders method presented in this
paper. Again, given that engineering design and economics
applications are often bounded with non-empty feasible
regions, this assumption becomes reasonable to apply to
any practical application.

Assumption 3 A worst-case uncertainty value exists for
robust optimization problem (4) and is a globally
interval-optimal point for a globally optimal robust solu-
tion (x*, y*).

1Note that Assumption 3 ensures that finding worst-case uncertainty values
enables us to find a globally optimal robust solution.
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From this point on, Assumptions 1–3 are enforced through-
out the paper. Note that Assumption 3 is valid when the
objective function is strictly convex and the constraint functions
are strictly quasiconvex (proof in Lemma 3 later), or when
constraint functions are monotone (trivial). If we have a unique
globally interval-optimal point, we automatically get the exis-
tence of a worst-case uncertainty value (hence the requirement
of strict convexity and quasiconvexity). The following lemma
shows a property of the new auxiliary function associated with
uncertainty variables (αu), which connects a globally optimal
robust point to its globally interval-optimal point. This will later
be used in modifying Benders decomposition to obtain solu-
tions to robust optimization problems.

Lemma 2 Under Assumptions 1–3, let (x*, y*) be a globally
optimal robust solution and ðx̂*; ŷ*Þ an associated glob-
ally interval-optimal point for problem (4). If (i) αuðx̂*;
ŷ*Þ⩾ αuðx̂; ŷÞ for all realizations of x̂ 2 ½ -Δx;Δx� and for
all ŷ 2 ½ -Δy;Δy�; then (ii) αuðx̂*; ŷ*Þ ¼ f ðx*; y*Þ:

Proof Since (x*, y*) is a globally optimal robust point, it is
automatically a robust point so by Lemma 1, maxj gjðx*;
y*; x̂; ŷÞ⩽ 0 for all realizations of x̂ 2 ½ -Δx;Δx� and for
all ŷ 2 ½ -Δy;Δy�: Note that the value αuðx̂*; ŷ*Þ was
calculated by minimizing f(x, y) while fixing x̂ ¼ x̂*; ŷ ¼
ŷ* in (5). Since (x*, y*) is in the feasible region for (5) and
by Assumption 2, a solution always exists to (5),
αuðx̂*; ŷ*Þ⩽ f ðx*; y*Þ: The next step will show with the
help of a contradiction argument that αuðx̂*; ŷ*Þ⩾ f ðx*; y*Þ:
Suppose that αuðx̂*; ŷ*Þ< f ðx*; y*Þ: By the statement of
this lemma, αuðx̂*; ŷ*Þ⩾ αuðx̂; ŷÞ for all x̂ 2 ½ -Δx;Δx�
and for all ŷ 2 ½ -Δy;Δy�: Using (5) by fixing x̂ ¼ x̂*; ŷ ¼
ŷ*; let x′, y′ (dependent on x̂*; ŷ*) be a solution to the
minimization problem in (5) such that αuðx̂*; ŷ*Þ ¼
f ðx′; y′Þ: Then (i) implies f ðx′; y′Þ⩾ αuðx̂; ŷÞ for all x̂ 2
½ -Δx;Δx� and for all ŷ 2 ½ -Δy;Δy�: By our contradictory
assumption, this also implies f ðx*; y*Þ>αuðx̂*; ŷ*Þ ¼
f ðx′; y′Þ⩾ αuðx̂; ŷÞ which simplifies to f ðx*; y*Þ> αuðx̂; ŷÞ
for all x̂ 2 ½ -Δx;Δx� and for all ŷ 2 ½ -Δy;Δy�: Note that
the condition f ðx*; y*Þ>αuðx̂; ŷÞ for all x̂ 2 ½ -Δx;Δx� and
for all̂y 2 ½ -Δy;Δy� violates Assumption 3. By Assump-
tion 3, there exists a worst-case uncertainty value, that is,
there exists a ðx̂wc; ŷwcÞ 2 ð½ -Δx;Δx�; ½ -Δy;Δy�Þ such
that f ðx*; y*Þ ¼ αuðx̂wc; ŷwcÞ. But this would imply
αuðx̂wc; ŷwcÞ> αuðx̂; ŷÞ for all x̂ 2 ½ -Δx;Δx� and for
all ŷ 2 ½ -Δy;Δy� which is a contradiction. Hence, this
contradiction shows that αuðx̂*; ŷ*Þ⩾ f ðx*; y*Þ: Combin-
ing the two inequalities αuðx̂*; ŷ*Þ⩾ f ðx*; y*Þ and
αuðx̂*; ŷ*Þ⩽ f ðx*; y*Þ gives αuðx̂*; ŷ*Þ ¼ f ðx*; y*Þ: □

Note that αuðx̂; ŷÞ ¼ miny αyðyÞ ¼ minx;y f ðx; yÞ: The next
two theorems form the basis of the Robust Benders method.
The first shows a particular characteristic of a worst-case value
of uncertainty. The second shows that a particular characteristic
of an uncertainty variable value can be used to find a globally
optimal robust solution.

Theorem 1 Let a worst-case value of uncertainty for (4) be
ðx̂wc; ŷwcÞ. Then, αuðx̂wc; ŷwcÞ⩾ αuðx̂; ŷÞ for all realizations
of x̂ 2 ½ -Δx;Δx� and for all ŷ 2 ½ -Δy;Δy�:

Proof Let (x*, y*) be a globally optimal robust solution to (4).
Then, by definition, αuðx̂wc; ŷwcÞ ¼ f ðx*; y*Þ: Problem (4)
has the same objective function as (5) but the feasible
region of (4) is a subset of the feasible region of (5).
Therefore, for any fixed x̂; ŷ f ðx*; y*Þ⩾ αuðx̂; ŷÞ: There-
fore, αuðx̂wc; ŷwcÞ⩾ αuðx̂; ŷÞ for all realizations of x̂ 2
½ -Δx;Δx� and for allŷ 2 ½ -Δy;Δy�: □

Theorem 2 Suppose there exists a unique uncertainty value
vector ðx̂c; ŷcÞ for which αuðx̂c; ŷcÞ⩾ αuðx̂; ŷÞ for all
realizations of x̂ 2 ½ -Δx;Δx� and ŷ 2 ½ -Δy;Δy�: Then,
a solution to optimization problem (8) will be a globally
optimal robust solution to problem (4).

min
x;y

f x; yð Þ

s:t: gj x; y; x̂; ŷð Þ⩽ 0; j ¼ 1; ¼ ; J

x̂ ¼ x̂c; ŷ ¼ ŷc

x 2 Rn; y 2 Zm ð8Þ

Proof Let (xc, yc) be a solution to (8), which implies that
αuðx̂c; ŷcÞ ¼ f ðxc; ycÞ by (5). By Assumption 3, there exists
a worst-case uncertainty value ðx̂wc; ŷwcÞ 2 ð½-Δx;Δx�;
½ -Δy;Δy�Þ such that f ðx*; y*Þ ¼ αuðx̂wc; ŷwcÞ; where
(x*, y*) is a globally optimal robust solution to (4). Since
(x*, y*) is a solution to (4), it is also feasible to (8) as the
feasible region for (4) is a subset of the feasible region for
(8). Hence, f (xc, yc)⩽ f (x*, y*), which implies αuðx̂c; ŷcÞ
⩽ αuðx̂wc; ŷwcÞ: We now claim that αuðx̂c; ŷcÞ⩽ αuðx̂wc;
ŷwcÞ ) ðx̂c; ŷcÞ ¼ ðx̂wc; ŷwcÞ: We will prove this claim by
contradiction. Suppose the above claim is not true, that
is, αuðx̂c; ŷcÞ⩽ αuðx̂wc; ŷwcÞ but ðx̂c; ŷcÞ≠ ðx̂wc; ŷwcÞ: That
would imply, by the premise in the theorem statement that
if ðx̂c; ŷcÞ≠ ðx̂wc; ŷwcÞ then αuðx̂c; ŷcÞ>αuðx̂wc; ŷwcÞ; which
contradicts αuðx̂c; ŷcÞ⩽ αuðx̂wc; ŷwcÞ: Hence, the premise
ðx̂c; ŷcÞ≠ ðx̂wc; ŷwcÞ is incorrect and we conclude ðx̂c; ŷcÞ ¼
ðx̂wc; ŷwcÞ; which impliesðx̂c; ŷcÞ is a worst-case uncer-
tainty value. By the definition of a worst-case uncertainty
value, (8) gives a globally optimal robust solution. □

The purpose of Theorem 2 is that if the following optimiza-
tion problem2 (9) has a unique solution, that solution can be
used to find a solution to (4).

max
x̂;ŷ

αu x̂; ŷð Þ

s:t: x̂ 2 -Δx;Δx½ �; ŷ 2 -Δy;Δy½ �; x̂ 2 Rnu ; ŷ 2 Zmu ð9Þ

2Note that the function αuðx̂:ŷÞ is not known in closed form but will be later
shown to be approximated using a variation of Benders cuts.
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3. Formulation of approach: solving mixed-integer
robust optimization problems with convex objective and
quasiconvex constraints

Theorem 2 shows that finding globally interval-optimal points
can help us obtain an optimal robust solution. For quasiconvex
functions, we know that the interval-optimal points will lie on
one of the endpoints (and so will the globally interval-optimal
points), which follows directly from the definition below.

3.1. Quasiconvex function

A function q: Ω→R defined on a convex subset Ω is said to be
quasiconvex if for all x, y∈Ω and λ∈ [0, 1] q(λx+ (1− λ)y)⩽
max{q(x),q(y)}. In particular, if a function q(z):[−Δz,Δz]→R
is quasiconvex over a vector interval [−Δz,Δz]∈RM, then
for all z∈ [−Δz,Δz], q(z)⩽max{q(Δzm)} where Δzm∈
({Δzi}i= 1

M ∪ {−Δzi}i=1
M ).

Realize that all linear functions as well as convex functions
are quasiconvex. Considering the constraint functions of (4) to
be quasiconvex greatly simplifies the problem, and allows an
easier use of Benders decomposition. Problem (4) is now
rewritten as problem (10) and problem (9) is rewritten as
problem (11). For purposes of notation, let the endpoints of the
vector interval be denoted by (V x)1, (V

x)2, (V
x)3,…, ðVxÞ2nu :

Each endpoint vector (V x)k, k= 1,…, 2nu is defined such that
each of its elements (V i

x)k is either Δxi or −Δxi, that is, (V i
x)k∈

{−Δxi,Δxi} for i= 1,…, nu. The notation for (Vi
y)k is similar.3

min
x;y

f x; yð Þ

s:t: gj x; y; x̂; ŷð Þ⩽ 0; j ¼ 1; ¼ ; J

gj x; y; 0; 0ð Þ⩽ 0; j ¼ 1; ¼ ; J

x 2 Rn; y 2 Zm; x̂ 2 Rnu ; ŷ 2 Zmu ;

8x̂ 2 Vxð Þf g2nuk¼18 ŷ 2 Vyð Þk
� �2mu

k¼1 ð10Þ
max
x̂;ŷ

αu x̂; ŷð Þ

s:t: x̂ 2 Vxð Þk
� �2nu

k¼1; ŷ 2 Vyð Þk
� �2mu

k¼1 ð11Þ

Lemma 3 Under Assumptions 1–2, Assumption 3 holds for
problem (10) when f is strictly convex and g are strictly
quasiconvex.

Proof A worst-case uncertainty value is a globally interval-
optimal point by definition. By Assumption 2, let (x*, y*)
be a globally optimal robust solution to (10) and ðx̂*; ŷ*Þ
its associated interval-optimal point. We will prove the
existence of a worst-case uncertainty value via contra-

diction. Assume ðx̂*; ŷ*Þ is not a worst-case uncertainty
value for (10), that is, solving (10) with ðx̂*; ŷ*Þ fixed as in
(7) yields a non-robust solution (xc, yc) for which f(xc,-

yc)⩽ f(x*, y*). We can write gjðx; y; x̂; ŷÞ ¼ gjðx + x̂; y + ŷÞ
and find ðx̂p; ŷpÞ such that ðx* + x̂p; y* + ŷpÞ is a convex
combination of (x*, y*) and (xc, yc) and thus gðx* + x̂p;
y* + ŷ p; x̂*; ŷ*Þ<max ðgðx*; y*; x̂*; ŷ*Þ; gðxc; yc; x̂*; ŷ*ÞÞ⩽ 0
implying ðx* + x̂ p; y* + ŷ pÞ is a feasible solution to (10).
Owing to strict convexity f ðx* + x̂ p; y* + ŷ pÞ<max
ðf ðx*Þ; f ðx cÞÞ: But this violates optimality of x* and thus
our assumption that there can be a non-robust solution is
violated. Therefore, Assumption 3 holds. □

Numerical evidence indicates that αy convex in y and αu
concave in x̂; ŷ results in the Robust Benders decomposition
method converging to a solution. There is a larger class of
functions than all linear programs for which these conditions
are valid. In particular, this class (for which αy convex in
y and αu concave in x̂; ŷ) encompasses the class of all
optimization problems for which Benders decomposition
converges. Indeed, for many engineering applications as well
as numerical examples, local convexity of αy and local
concavity of αu can be sufficient (Conejo et al, 2006). The
next two theorems provide a more general setting for αy to
be convex in y and αuis convex. The algorithm provided
works when αuis quasiconvex.

Theorem 3 The function αy defined in (6) is convex when the
objective function of (4) is convex and separable into x and
y functions and the constraint functions are quasiconvex
such that the feasible region of (4) is convex.

Proof Note that f is separable into the two variables x and y,
that is, f(x, y)= fx(x) + fy(y). The subscript with the objective
and constraint functions denotes this separability. The
feasible region of (5), for any fixed values of x̂ and ŷ, is
convex based on Assumption 1. Fix x̂ and ŷ to any specific
values x̂fixed and ŷfixed; respectively. Hence, the feasible
region of (6) is a subset of the feasible region of (5),
restricted to fixed values of y. If there are no feasible
solutions or one feasible solution then the proof is
vacuously true. Consider two feasible solutions of problem
(6), s1= (x1, y1) and s2= (x2, y2) in such a way that for the
variables y1 and y2, the associated solutions from (6) are
x1 and x2, respectively, with associated objective function
values αy(y

1)= fx(x
1) and αy(y

2)= fx(x
2), respectively. Let

s3= (x3, y3) be the convex combination of s1 and s2, that is,
for λ∈ [0, 1], s3= λs1 + (1− λ)s2. Now consider the value of
the objective function at s3. We have fx(x

3)= fx(λx
1 + (1− λ)

x2)⩽ λfx(x
1) + (1− λ)fx(x

2) because fx is convex. This
implies fx(x

3)⩽ λαy(y
1) + (1− λ)αy(y

2). But using y3 as a
fixed value in (6), the optimization problem (6) can be
solved to obtain αy(y

3). Let this solution to (6) be signified
by x* and hence αy(y

3)= fx(x*). Because of an optimality
argument, fx(x*)⩽ fx(x

3). Hence, αy(y
3)⩽ λαy(y

1) + (1− λ)
αy(y

2) and this shows that αyis convex. □

3Since only endpoints are considered,ŷ does not need to be distinguished
from x̂ and the same procedures can be applied. However, if Δy is not integer,
then taking the first integer value less than Δy will ensure an optimal robust
solution.
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Theorem 4 The function αu defined in (5) (with y relaxed to
be real) is convex when the objective function of (4) is
convex and the constraint functions are quasiconvex such
that the feasible region of (4) is convex.

Proof Consider two points s1 ¼ ðx̂1; ŷ1Þ; s2 ¼ ðx̂2; ŷ2Þ and let
s3 ¼ ðx̂3; ŷ3Þ be the convex combination of s1 and s2, that
is, for λ∈ [0, 1], s3= λs1 + (1− λ)s2. Let αðx̂1; ŷ1Þ ¼
f ðx1; y1Þ; αðx̂2; ŷ2Þ ¼ f ðx2; y2Þ; and (x3, y3)= λ(x1, y1) +
(1− λ)(x2, y2) for λ∈ [0, 1] which implies f (x3, y3)⩽ λ f (x1,
y1) + (1− λ)f(x2, y2) by the convexity of f. Then, since
g is quasiconvex, we have gðx3; y3; x̂3; ŷ3Þ⩽ maxðgðx1; y1;
x̂1; ŷ1Þ; gðx2; y2; x̂2; ŷ2ÞÞ⩽ 0: Hence, (x3, y3)is in the feasi-
ble region of αðx̂3; ŷ3Þ which implies αu is convex by an
optimality argument αðx̂3; ŷ3Þ⩽ f ðx3; y3Þ⩽ λf ðx1; y1Þ +
ð1 - λÞf ðx2; y2Þ⩽ λαðx̂1; ŷ1Þ + ð1 - λÞαðx̂2; ŷ2Þ: □

Unfortunately standard Benders cuts cannot be used to
approximate quasiconvex functions that are not convex.
Our advantage in a robust optimization setting with quasicon-
vex constraints as in problem (10) is that we only need good
approximations to the functions at the endpoints. Approxima-
tions of the function αu are not needed in between the endpoints,
as the function attains its maximum at the endpoints. Figure 1
shows the idea behind these new cuts. The very top horizontal
cut (labelled as ‘Cut 0’) is an upper bound set for αu as would
normally occur in Benders decomposition. The numbers next to
the cuts show the order of the cuts made in the iterative process.
At iteration it a new Benders cut added to the master problem
looks like the following:

αu ⩽ f xsolit ; y
sol
it
; x̂solit ; ŷ

sol
it

� �

+
f xsol

it
; ysol

it
; x̂ solit ; ŷ solit

� �
- f xsol

it - 1
; ysol

it - 1
; x̂ solit - 1; ŷ

sol
it - 1

� �

x̂solit ; ŷ
sol
itð ÞT - x̂solit - 1; ŷ

sol
it - 1

� �T

´ x̂; ŷð ÞT - x̂solit ; ŷ
sol
it

� �T� �
ð12Þ

This cut is one way to approximate the function around the
endpoints and see which one has a larger value of αu as shown
in Figure 1.
The following describes the Robust Benders decomposition

method for a separable convex objective function and quasi-
convex constraints forming a convex feasible set.
Set iteration counter (it) to 0. Pick a small positive constant

for tolerance (tol).

Step 1: Set iteration counter (it) to it= it+1. The variables
ðx̂; ŷÞ are complicating variables since we fix them in
the subproblems. Hence, the original master problems
will be4:

min
αy;y

αy + fy yð Þ

s:t: ylow ⩽ y⩽ yhigh

αy ⩾ αmin
y ð13Þ

max
αu;x̂;ŷ

αu

s:t: -Δx⩽ x̂⩽Δx

-Δy⩽ ŷ⩽Δy

αu ⩽ αmax
u ð14Þ

The bounds on αy,αu are user-defined depending on the
problem. Solving the above problem gives αy=αy

it,
αu=αu

it and y ¼ yitfixed; x̂ ¼ x̂itfixed; ŷ ¼ ŷitfixed:
Step 2: Fix the values of the complicating variables, and then

solve the following subproblem as in the standard
Benders decomposition method.

w ¼ min
x

fx xð Þ

s:t: gj x; y; x̂; ŷð Þ⩽ 0; j ¼ 1; ¼ ; J

y ¼ y itfixed Dual : λit
� �

x̂ ¼ x̂ itfixed

ŷ ¼ ŷ itfixed ð15Þ
Step 3: Check for convergence. Set zsub=w and zmas1=αy

it,
zmas2=αu

it If the difference (|zsub− zmas1|)/zsub⩽ tol and
(|zsub− zmas2|)/zsub⩽ tol then stop.

Step 4: Add Benders cuts to the respective master problems. To
problem (13), add a standard Benders cut

αy ⩾ f xsolit ; y
sol
it
; x̂solit ; ŷ

sol
it

� �
+ λit y - ysolit

� �
(16)

While for the master problem (14) add the Robust
Benders cut (12).

uα
Cut 0

Cut 4 
(Convergence,

Final Cut) 

Cut 1

Cut 2

Cut 3

ˆ,ˆ( y)x
(Δx,Δy)(−Δx,−Δy)

Figure 1 The Robust Benders cuts to estimate the maximum
endpoint of αu.

4Note that the complicating variables do not appear in the objective function
for the master problem (14).
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Step 1 (returned): Let IT be the number of iterations com-
pleted. Solve the following master problems
after adding the Benders cuts

min
αy;y

αy + fy yð Þ

s:t: ylow ⩽ y⩽ yhigh

αu ⩾ f xsolit ; y
sol
it
; x̂solit ; ŷ

sol
it

� �
+ λit y - ysolit

� �

for it ¼ 1; ¼ ; IT

αy ⩾ αmin
y ð17Þ

max
αu ;x̂;ŷ

αu

s:t: -Δx⩽ x̂⩽Δx

-Δy⩽ ŷ⩽Δy

αu ⩽ f xsolit ; y
sol
it
; x̂ solit ; ŷ solit

� �

+
f xsol

it
; ysol

it
; x̂solit ; ŷ

sol
it

� �
- f xsol

it - 1
; ysol

it - 1
; x̂solit - 1; ŷ

sol
it - 1

� �

x̂solit ; ŷ
sol
itð ÞT - x̂solit - 1; ŷ

sol
it - 1

� �T

´ x̂; ŷð ÞT - x̂solit ; ŷ
sol
it

� �T� �

αu ⩽ αmaxu

For it ¼ 1; ¼ ; IT ð18Þ
Return to Step 2 and proceed in this manner
until convergence is met.

The flowchart in Figure 2 gives an outline of the
algorithm. One of the important factors of this algorithm is
that there are two requirements for convergence, both of
which must be met to have an optimal robust solution.
Nonconvergence of the αy master problem implies that the
solution is not integer-optimal for y and nonconvergence of
the αu master problem implies that the solution might not be
robust. Note that Gabriel et al (2009) provide a heuristic to

test when the α functions are convex as well as a work-
around for when they are not. A general convergence proof
for this algorithm is part of ongoing research and we believe
this section has provided a good basis for this theory. The
numerical results in Section 4 provide further support to this
approach.

4. Numerical results

The examples in Table 2 show the applicability of the algorithm
to various types of robust optimization problems. The first six
numerical problems consist of two robust mixed-integer linear
programs, two robust mixed-integer quadratic programs, and
two robust programs with quasiconvex constraints. Examples 1
and 2 have been taken from Li et al (2011), examples 3 and 4
from Siddiqui et al (2011) and examples 5 and 6 from Hock and
Schittkowski (1980). An engineering example of the design of a
heat exchanger is also presented and forms the seventh test
problem. Detailed formulations as well as further characteristics
of the solution are in Siddiqui et al (2011). Note that while the
theoretical foundation required there be a unique worst-case
uncertainty value, the last three examples did not have a unique
worst-case uncertainty value but were still able to provide
locally optimal robust solutions similar to Siddiqui et al
(2011). The next six text problems are from Floudas et al
(1999). Solutions were checked by a simple uniform discretiza-
tion of the uncertainty range (each point separated by 0.01).
Tolerance (tol) was set to 0.00001 for all examples. Table 2
describes the results obtained from the numerical test problems.
All solutions were shown to be optimal robust, and the function
calls and solution time were also at a reasonable level. An
important point to note is that the solution time and function
calls increase at not more than an order of magnitude when
going from linear and quadratic problems to problems with
quasiconvex constraints. Note that the Heat Exchanger example
is solved using an additional heuristic as described in Siddiqui
et al (2011) to ensure the constraints are quasiconvex before
applying the algorithm in this paper.

Figure 2 The Robust Benders cuts decomposition method.
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Table 2 Description of test problems

Source # of variables
(Cont., Integer)*

# of
constraints

Determ. optimal
function value

Robust optimal
function value

# of function
calls (Determ.)

# of function
calls (Robust)

Solution time† in
seconds (Determ.)

Solution time in
seconds (Robust)

Iterations of Robust
Benders method

Example 1 (5, 3) 12 − 23.0 − 20.8 5 31 0.351 0.538 3
(RMILP)
Example 2 (5, 3) 12 − 31.2 − 28.8 5 31 0.271 0.658 3
(RMILP)
Example 3 (4, 2) 6 9.2 9.3 7 21 0.356 1.245 4
(RMIQP) x1, x2
Example 4 (4, 3) 6 9.2 10.2 7 21 0.356 1.729 4
(RMIQP) x1, x2, x3
Hock 100 (8, 3) 18 680.6 695.8 8 37 0.688 1.236 4
(Qconvex) x1, x2, x3
Hock 106 (7, 4) 22 7474.7 7474.8 7 31 0.364 0.681 4
(Qconvex) x1,x2,x3,x4
Heat Exch. (9, 1) 89 − 1006.7 − 964.8 49 1092 1.765 4.657 7
(Magrab
et al, 2004)

NT

Floudas 1 (2, 3) 5 7.7 8.2 5 11 0.742 0.846 2
Floudas 2 (2, 1) 3 1.1 1.4 5 9 0.301 0.532 2
Floudas 3 (3, 4) 9 4.6 4.9 7 21 0.587 0.836 3
Floudas 4 (3, 8) 7 − 0.9 − 0.6 14 57 1.287 2.495 6
Floudas 5 (2, 0) 4 31.0 48.0 4 13 0.213 0.258 2
Floudas 6 (1, 1) 3 − 17.0 − 13.5 5 27 0.247 1.395 2

*For Example 3, Example 4, Hock 100, Hock 106, Heat Exch., certain variables from the source problem are constrained to be integer and are listed under the number of variables for reference.
†All problems were solved on a 2 GHz computer with 4 GB memory using GAMS (GAMS, 2009). For a discussion on function calls, refer to the appendix in Siddiqui (2011).
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5. Concluding remarks

This paper presents a new robust optimization approach to
solve problems that have mixed-integer decision variables and
interval uncertainty. The proposed Robust Benders method
obtains optimal robust solutions to MILP, mixed-integer quad-
ratic programming, and a class of extended problems which
include any problems that have quasiconvex constraints for
which the standard Benders decomposition converges. The
approach is computationally tractable and is tested on 13
numerical and engineering examples with the most general being
nonlinear (non-convex) objective function and nonlinear (non-
convex) constraint mixed-integer robust optimization problems.
This paper provides theoretical and numerical evidence of the

method providing promising results. In particular, the theory is
a natural extension of standard Benders decomposition that
takes advantage of the problem structure. Such an extension
helps overcome both the integer aspect as well as the two-level
nature of the problem. A general convergence proof for the
proposed algorithm is part of ongoing research.
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