“Systems Life Cycle Design Approach to Green Design and Energy Sustainability” seminar by Dr. Harrison Kim @ 234 Ames Hall
Nov 18 @ 3:00 pm – 4:00 pm

Dr. Harrison Kim is an Associate Professor in the Department of Industrial and Enterprise Systems Engineering at the University of Illinois at Urbana-Champaign (UIUC) with appointment at the Beckman Institute and the Computational Science and Engineering. Dr. Kim’s research focuses on a variety of areas of complex systems design and large-scale computation and optimization. Dr. Kim’s current research topics are energy systems engineering; renewable, hybrid energy conversion and distribution; user-centered sustainable product design; product design analytics; multidisciplinary, multilevel optimization; green design. Application areas are automotive, consumer electronics, heavy-duty equipment, national security, commercial/military system of systems, and information technology. Dr. Kim has received numerous recognitions including the National Science Foundation’s CAREER Award, Dean’s Award in Excellence in Research (Xerox Award), Best Paper Award in ASME Design for Manufacturing and Life Cycle Conference, and news media coverage in the USA Today and the Chicago Tribune. Harrison Kim earned his Ph.D. degree at the University of Michigan in 2001 in the area of Engineering System Design and Optimization in Mechanical Engineering under the supervision of Prof. Panos Papalambros. He joined the University of Illinois in 2005 after Business-IT consulting experience and postdoctoral training under Prof. Wei Chen at Northwestern University and has been leading the Enterprise Systems Optimization Lab.



Systems Life Cycle Design Approach to Green Design and Energy Sustainability (abstract)
Emerging interest in the renewable energy sources has garnered new contributions in energy systems engineering. Designing renewable energy generation systems, however, brings additional layer of challenges in that it is impossible to assess and predict exogenous conditions accurately. Hybrid power generation systems (HPGS), with respect to this challenge, can bring a new level of technical and economic performance of power supply by mitigating the effect of uncertainties. Kim’s team recently developed a new suite of systems design methodologies for single HPGS and hybrid energy farms that overcome non-smooth logical disjunction by use of multidisciplinary design optimization with complementarity constraints and various risk and reliability measures. The methods also utilize multi-stage programming model and design analytics capabilities for predicting system behavior in the near future time horizon. In this presentation, the speaker will present the findings from the recent studies sponsored by NSF and industrial partners (Caterpillar and Deere) in collaboration with the National Renewable Energy Lab (NREL) and introduce newly emerging topics in renewable energy systems engineering.
Seminar: Tsunami and Geodisasters @ Hackerman Hall B-17
Oct 29 @ 12:00 pm – 1:00 pm

Tsunami & Geodisasters: A Decade of Lifeline Engineering

The rise of mega-disasters this century prompted development of engineering solutions for community and infrastructure resilience. ASCE 7-16 will include a new Chapter 6 Tsunami Loads and Effects, drawn from context of the 2011 Japan Tohoku Tsunami and resulting Fukushima Plant disaster. Chapter 6 is a bottom up state of the art design methodology focused on loss drivers, contrasting with other hazard provisions revised ad-hoc over several decades. The tsunami hazards awakening from the 2004 Indian Ocean Tsunami, claiming nearly 300,000 fatalities, brought attention to need for broad disaster preparedness of vulnerable populations. In the Post 9-11 Security environment, it pushed efforts to develop methods for all-hazards community and infrastructure resilience using multi-faceted research, performance based engineering and improved standards and building codes. Tsunami and other understudied hazards are advancing now with relatively low cost digitized maps, lidar and geospatial tools used for rapid exposure screening, loss modeling and engagement by the insurance and business supply chain industry. The experience from tsunami, and its seismic and flood components is a useful context for understanding disaster resilience using a lifeline infrastructure engineering framework, to help communities identify and prioritize diverse needs. Recent initiatives include the UN Disaster Resilience Scorecard developed by IBM and AECOM in 2014, and the ASCE Infrastructure Resilience Division launched earlier this year. Both support the 2015 UN Sendai Framework for Disaster Risk Reduction and the UN Global Goals for Sustainable Development ratified one month ago in New York for guiding actions over the next 15 years.

Speaker: Mathew Francis, Infrastructure Resilience Manager, AECOM Technology Corporation

Center for Systems Science and Engineering