“Complex Systems Science: Solving Complex Problems in a Complex World” Seminar @ Bloomberg School of Public Health Room W2008
Mar 19 @ 12:15 pm – 1:15 pm

Dr. Yaneer Bar-Yam is the founder and president of the New England Complex Systems Institute. He received his SB and PhD in physics from MIT in 1978 and 1984 respectively. His work explores the origins and impacts of market crashes, ethnic violence, military conflict and pandemics, analyzes social networks, as well as the bases of creativity, panics, evolution and altruism. His work on the causes of the global food crisis was cited as among the top 10 scientific discoveries of 2011 by Wired magazine. Dr. Bar-Yam has advised governments, NGOs, and corporations on using principles and insights from complex systems science to solve seemingly intractable problems. He is the author of two books: his textbook Dynamics of Complex Systems, which he has taught to over 2,000 graduate students, professionals and executives, and Making Things Work, which describes the use of complex systems science for solving problems in healthcare, education, systems engineering, international development, and ethnic conflict.

Seminar: Tsunami and Geodisasters @ Hackerman Hall B-17
Oct 29 @ 12:00 pm – 1:00 pm

Tsunami & Geodisasters: A Decade of Lifeline Engineering

The rise of mega-disasters this century prompted development of engineering solutions for community and infrastructure resilience. ASCE 7-16 will include a new Chapter 6 Tsunami Loads and Effects, drawn from context of the 2011 Japan Tohoku Tsunami and resulting Fukushima Plant disaster. Chapter 6 is a bottom up state of the art design methodology focused on loss drivers, contrasting with other hazard provisions revised ad-hoc over several decades. The tsunami hazards awakening from the 2004 Indian Ocean Tsunami, claiming nearly 300,000 fatalities, brought attention to need for broad disaster preparedness of vulnerable populations. In the Post 9-11 Security environment, it pushed efforts to develop methods for all-hazards community and infrastructure resilience using multi-faceted research, performance based engineering and improved standards and building codes. Tsunami and other understudied hazards are advancing now with relatively low cost digitized maps, lidar and geospatial tools used for rapid exposure screening, loss modeling and engagement by the insurance and business supply chain industry. The experience from tsunami, and its seismic and flood components is a useful context for understanding disaster resilience using a lifeline infrastructure engineering framework, to help communities identify and prioritize diverse needs. Recent initiatives include the UN Disaster Resilience Scorecard developed by IBM and AECOM in 2014, and the ASCE Infrastructure Resilience Division launched earlier this year. Both support the 2015 UN Sendai Framework for Disaster Risk Reduction and the UN Global Goals for Sustainable Development ratified one month ago in New York for guiding actions over the next 15 years.

Speaker: Mathew Francis, Infrastructure Resilience Manager, AECOM Technology Corporation

Center for Systems Science and Engineering