“Systems Life Cycle Design Approach to Green Design and Energy Sustainability” seminar by Dr. Harrison Kim @ 234 Ames Hall
Nov 18 @ 3:00 pm – 4:00 pm

Dr. Harrison Kim is an Associate Professor in the Department of Industrial and Enterprise Systems Engineering at the University of Illinois at Urbana-Champaign (UIUC) with appointment at the Beckman Institute and the Computational Science and Engineering. Dr. Kim’s research focuses on a variety of areas of complex systems design and large-scale computation and optimization. Dr. Kim’s current research topics are energy systems engineering; renewable, hybrid energy conversion and distribution; user-centered sustainable product design; product design analytics; multidisciplinary, multilevel optimization; green design. Application areas are automotive, consumer electronics, heavy-duty equipment, national security, commercial/military system of systems, and information technology. Dr. Kim has received numerous recognitions including the National Science Foundation’s CAREER Award, Dean’s Award in Excellence in Research (Xerox Award), Best Paper Award in ASME Design for Manufacturing and Life Cycle Conference, and news media coverage in the USA Today and the Chicago Tribune. Harrison Kim earned his Ph.D. degree at the University of Michigan in 2001 in the area of Engineering System Design and Optimization in Mechanical Engineering under the supervision of Prof. Panos Papalambros. He joined the University of Illinois in 2005 after Business-IT consulting experience and postdoctoral training under Prof. Wei Chen at Northwestern University and has been leading the Enterprise Systems Optimization Lab.



Systems Life Cycle Design Approach to Green Design and Energy Sustainability (abstract)
Emerging interest in the renewable energy sources has garnered new contributions in energy systems engineering. Designing renewable energy generation systems, however, brings additional layer of challenges in that it is impossible to assess and predict exogenous conditions accurately. Hybrid power generation systems (HPGS), with respect to this challenge, can bring a new level of technical and economic performance of power supply by mitigating the effect of uncertainties. Kim’s team recently developed a new suite of systems design methodologies for single HPGS and hybrid energy farms that overcome non-smooth logical disjunction by use of multidisciplinary design optimization with complementarity constraints and various risk and reliability measures. The methods also utilize multi-stage programming model and design analytics capabilities for predicting system behavior in the near future time horizon. In this presentation, the speaker will present the findings from the recent studies sponsored by NSF and industrial partners (Caterpillar and Deere) in collaboration with the National Renewable Energy Lab (NREL) and introduce newly emerging topics in renewable energy systems engineering.
Modeling Cyclone Risk and Seismic Building Vulnerability in Central America and the Caribbean @ Hackerman Hall B-17
Oct 8 @ 12:00 pm – 1:00 pm

Graduate Seminar: Modeling Cyclone Risk and Seismic Building Vulnerability in Central America and the Caribbean

This seminar will introduce two research projects applied to the Country Disaster Risk Profiles initiative of the World Bank: a hurricane hazard model and a probabilistic seismic vulnerability tool (PSVT). The windstorm hazard model is a novel approach which yields characterizations of windstorm activity (rate of occurrence, trajectory and spatial wind field) in the Central American region for use in natural risk assessment. The generative mechanism of storms is formulated as a superposition of stochastic processes whose joint opera;on yields synthetic cyclones activity in the region. The outcomes of the model match observed data acceptably well. A brief reference to the risk estimation procedure will be offered. Vulnerability functions estimate building damage caused by an acting hazard intensity. The PSVT is a software tool for creating vulnerability functions for seismic risk analysis. The approach estimates structural response of user-defined models subjected to ground acceleration signals integrating the equations of motion. Ground signals are realizations of random process models of site–specific ground motion hazard.


Speaker: Dr. Gonzalo Pita
Adjunct Assistant Scientist, Department of Civil Engineering, Johns Hopkins University; Sr. Natural Risk and Vulnerability Specialist, The World Bank

Center for Systems Science and Engineering