Calendar

May
27
Wed
2015
Seminar: Smart Technology-Enabled Building Energy and Peak Load Reduction and Their Effects on Occupants and the Indoor Environment @ Malone Hall room 107
May 27 @ 10:30 am – 11:30 am

Cetin

Kristen Cetin is a PhD candidate at the University of Texas at Austin, in the Department of Civil, Architectural and Environmental Engineering, in the Building Energy and Environment Group. She is also a licensed professional engineer and a LEED professional. Her research focuses on the use smart grid-connected technologies to reduce building energy use and peak loads, and assessing their effects on building occupants and the indoor environment.

 

 

SMART TECHNOLOGY-ENABLED BUILDING ENERGY AND PEAK LOAD REDUCTION AND THEIR EFFECTS ON OCCUPANTS AND THE INDOOR ENVIRONMENT

Building operations consume approximately 72% of electricity in the United States, and are responsible for over 70% of the peak demand on the electric grid, particularly in warm climates. The increasing deployment of technologies such as smart meters, home energy management systems (HEMS), and smart home-connected sensors and devices and their associated data provide an opportunity for data-driven operation and evaluation of the performance of buildings and their systems. This is particularly important as we face challenges in energy price fluctuations, distributed and renewable energy grid integration, and climate variability. More

 

Oct
8
Thu
2015
Modeling Cyclone Risk and Seismic Building Vulnerability in Central America and the Caribbean @ Hackerman Hall B-17
Oct 8 @ 12:00 pm – 1:00 pm

Graduate Seminar: Modeling Cyclone Risk and Seismic Building Vulnerability in Central America and the Caribbean

This seminar will introduce two research projects applied to the Country Disaster Risk Profiles initiative of the World Bank: a hurricane hazard model and a probabilistic seismic vulnerability tool (PSVT). The windstorm hazard model is a novel approach which yields characterizations of windstorm activity (rate of occurrence, trajectory and spatial wind field) in the Central American region for use in natural risk assessment. The generative mechanism of storms is formulated as a superposition of stochastic processes whose joint opera;on yields synthetic cyclones activity in the region. The outcomes of the model match observed data acceptably well. A brief reference to the risk estimation procedure will be offered. Vulnerability functions estimate building damage caused by an acting hazard intensity. The PSVT is a software tool for creating vulnerability functions for seismic risk analysis. The approach estimates structural response of user-defined models subjected to ground acceleration signals integrating the equations of motion. Ground signals are realizations of random process models of site–specific ground motion hazard.

 

Speaker: Dr. Gonzalo Pita
Adjunct Assistant Scientist, Department of Civil Engineering, Johns Hopkins University; Sr. Natural Risk and Vulnerability Specialist, The World Bank

Center for Systems Science and Engineering