“Modeling Strategic Behavior in Global Energy Markets- the Role of OPEC and the Impact of US Climate Policy” seminar @ 402 Ames Hall
Nov 5 @ 12:00 pm – 1:00 pm
"Modeling Strategic Behavior in Global Energy Markets- the Role of OPEC and the Impact of US Climate Policy" seminar @ 402 Ames Hall | Baltimore | Maryland | United States

Dr. Daniel Huppmann studied Mathematics at the Vienna University of Technology, where he earned an MSc degree in 2010. He joined the German Institute for Economic Research (DIW Berlin) as a student research assistant in 2008, started in DIW’s graduate (PhD) program in October 2011 and successfully defended his dissertation at the TU Berlin in June 2014. He is currently a Research Associate in the department Energy-Transportation-Environment at DIW Berlin. In his research, Daniel works at the intersection of Operations Research, game theory, and energy economics, with a focus on multi-stage games in the global crude oil and natural gas markets, and strategic investment in electricity networks.


Modeling Strategic Behavior in Global Energy Markets- the Role of OPEC and the Impact of US Climate Policy (abstract)

The first part of the talk focuses on the global crude oil market, in particular the role of OPEC, and the difficulty of properly capturing strategic behavior in real-world applications using equilibrium modeling. This article proposes a two-stage oligopoly model: in a game of several Stackelberg leaders, market power increases endogenously as the spare capacity of the competitive fringe goes down. This effect is due to the specific cost function characteristics of extractive industries. The model captures the increase of OPEC market power before the financial crisis and its drastic reduction in the subsequent turmoil at the onset of the global recession.The two-stage model better replicates the price path over the years 2003-2011 compared to a standard simultaneous-move, one-stage Nash-Cournot model with a fringe. This article also discusses how most large-scale numerical equilibrium models, widely applied in the energy sector, over-simplify and potentially misinterpret market power exertion.

The second part of the talk presents a large-scale global dynamic energy system and resource market equilibrium model (“MultiMod”). It combines endogenous fuel substitution within demand sectors and in power generation, detailed infrastructure capacity constraints and investment, as well as strategic behavior and market power aspects by suppliers in a unified framework. This model is the first-of-its-kind in which market power is exerted across several fuels. It bridges the divide between energy system models, focusing on fuel substitution and technology options, and sector specific models that have a detailed representation of infrastructure constraints and are able to capture strategic behavior. The model allows assessing and quantifying the impact of national or global climate policy and emission reduction targets on the global energy mix over the next decades. In the talk, Daniel will present current results from the Energy Modeling Forum, Round 31 (“North American Natural Gas and Energy Markets in Transition”), focusing on the impact of US shale gas scenarios and domestic energy policy (such as Technology Portfolio Standards) on global energy consumption patterns and the resulting import dependency and trade flows.

Seminar: Healthcare and the Environment: Emissions and Effects of Surgical Models and their Material Use @ 328 Malone Hall
Apr 20 @ 2:00 pm – 3:00 pm

Dr. Cassandra Thiel

Dr. Cassandra Thiel is a Fulbright-Nehru Fellow studying the lifecycle impacts of cataractsurgery at Aravind Eye Hospitalin Pondicherry, India. Dr.Thiel obtained her BS in Civil Engineering from Michigan Technological University in 2009 and completed her PhD in Civil Engineering from the University of Pittsburgh in 2013.




Healthcare and the Environment: Emissions and Effects of Surgical Models and their Material Use

The growing field of sustainability research endeavors to confront a fundamental challenge of our society- how  do we streamline our current consumption while simultaneously ensuring we can achieve our future requirements?In no area is this more evident than US healthcare. Spending on healthcare has reached nearly 18% of the USGDP. More


Seminar: Smart Technology-Enabled Building Energy and Peak Load Reduction and Their Effects on Occupants and the Indoor Environment @ Malone Hall room 107
May 27 @ 10:30 am – 11:30 am


Kristen Cetin is a PhD candidate at the University of Texas at Austin, in the Department of Civil, Architectural and Environmental Engineering, in the Building Energy and Environment Group. She is also a licensed professional engineer and a LEED professional. Her research focuses on the use smart grid-connected technologies to reduce building energy use and peak loads, and assessing their effects on building occupants and the indoor environment.




Building operations consume approximately 72% of electricity in the United States, and are responsible for over 70% of the peak demand on the electric grid, particularly in warm climates. The increasing deployment of technologies such as smart meters, home energy management systems (HEMS), and smart home-connected sensors and devices and their associated data provide an opportunity for data-driven operation and evaluation of the performance of buildings and their systems. This is particularly important as we face challenges in energy price fluctuations, distributed and renewable energy grid integration, and climate variability. More


Center for Systems Science and Engineering